Suppr超能文献

通过可控/活性自由基聚合构建的分子印迹蛋白质识别薄膜。

Molecularly imprinted protein recognition thin films constructed by controlled/living radical polymerization.

作者信息

Sasaki Shogo, Ooya Tooru, Kitayama Yukiya, Takeuchi Toshifumi

机构信息

Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.

Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.

出版信息

J Biosci Bioeng. 2015 Feb;119(2):200-5. doi: 10.1016/j.jbiosc.2014.06.019. Epub 2014 Jul 21.

Abstract

We demonstrated the synthesis of molecularly imprinted polymers (MIPs) with binding affinity toward a target protein, ribonuclease A (RNase) by atom transfer radical polymerization (ATRP) of acrylic acid, acrylamide, and N,N'-methylenebisacrylamide in the presence of RNase. The binding activity of the MIPs was evaluated by surface plasmon resonance (SPR) of the MIP thin layers prepared on the gold-coated sensor chips. The MIPs prepared by ATRP (MIP-ATRP) had a binding affinity toward RNase with larger binding amount compared to MIPs prepared by conventional free radical polymerization methods (MIP-RP). Moreover, protein selectivity was evaluated using reference proteins (cytochrome c, myoglobin, and α-lactalbumin) and was confirmed in MIP-ATRP of optimum film thickness determined experimentally to be 15-30 nm; however, protein selectivity was not achieved in all MIP-RP. We have shown that ATRP is powerful technique for preparing protein recognition materials by molecular imprinting.

摘要

我们通过在核糖核酸酶A(RNase)存在的情况下,使丙烯酸、丙烯酰胺和N,N'-亚甲基双丙烯酰胺进行原子转移自由基聚合(ATRP),证明了对目标蛋白质核糖核酸酶A(RNase)具有结合亲和力的分子印迹聚合物(MIP)的合成。通过在涂金的传感器芯片上制备的MIP薄层的表面等离子体共振(SPR)来评估MIP的结合活性。与通过传统自由基聚合方法制备的MIP(MIP-RP)相比,通过ATRP制备的MIP(MIP-ATRP)对RNase具有结合亲和力,且结合量更大。此外,使用参考蛋白质(细胞色素c、肌红蛋白和α-乳白蛋白)评估了蛋白质选择性,并在实验确定的最佳膜厚度为15 - 30 nm的MIP-ATRP中得到证实;然而,并非所有MIP-RP都实现了蛋白质选择性。我们已经表明,ATRP是一种通过分子印迹制备蛋白质识别材料的强大技术。

相似文献

1
Molecularly imprinted protein recognition thin films constructed by controlled/living radical polymerization.
J Biosci Bioeng. 2015 Feb;119(2):200-5. doi: 10.1016/j.jbiosc.2014.06.019. Epub 2014 Jul 21.
2
Surface plasmon resonance sensor for lysozyme based on molecularly imprinted thin films.
Anal Chim Acta. 2007 May 15;591(1):63-7. doi: 10.1016/j.aca.2007.02.072. Epub 2007 Mar 12.
3
Heparin molecularly imprinted polymer thin flm on gold electrode by plasma-induced graft polymerization for label-free biosensor.
J Pharm Biomed Anal. 2018 Mar 20;151:324-330. doi: 10.1016/j.jpba.2018.01.012. Epub 2018 Jan 9.
5
[Molecularly imprinted polymers in electro analysis of proteins].
Biomed Khim. 2015 May-Jun;61(3):325-31. doi: 10.18097/PBMC20156103325.
7
Orientationally Fabricated Zwitterionic Molecularly Imprinted Nanocavities for Highly Sensitive Glycoprotein Recognition.
Langmuir. 2019 Feb 5;35(5):1320-1326. doi: 10.1021/acs.langmuir.8b01215. Epub 2018 Jul 11.
8
Surface molecular imprinting by atom transfer radical polymerization.
Biomacromolecules. 2005 Mar-Apr;6(2):1113-21. doi: 10.1021/bm049311i.
9
Protein-imprinted polymer films prepared via cavity-selective multi-step post-imprinting modifications for highly selective protein recognition.
Anal Bioanal Chem. 2021 Oct;413(24):6183-6189. doi: 10.1007/s00216-021-03386-5. Epub 2021 May 17.
10
Surface plasmon resonance sensor for antibiotics detection based on photo-initiated polymerization molecularly imprinted array.
Talanta. 2016 Dec 1;161:797-803. doi: 10.1016/j.talanta.2016.09.049. Epub 2016 Sep 19.

引用本文的文献

1
Bio-Inspired Imprinting Materials for Biomedical Applications.
Adv Sci (Weinh). 2022 Oct;9(28):e2202038. doi: 10.1002/advs.202202038. Epub 2022 Jul 31.
2
Oriented, molecularly imprinted cavities with dual binding sites for highly sensitive and selective recognition of cortisol.
R Soc Open Sci. 2017 Aug 16;4(8):170300. doi: 10.1098/rsos.170300. eCollection 2017 Aug.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验