Graduate School of Engineering and Science, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto, Tokyo 135-8548, Japan.
Graduate School of Engineering and Science, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto, Tokyo 135-8548, Japan.
J Pharm Biomed Anal. 2018 Mar 20;151:324-330. doi: 10.1016/j.jpba.2018.01.012. Epub 2018 Jan 9.
Heparin, a highly sulfated glycosaminoglycan, is an important biomaterial having biological and therapeutic functionalities such as anticoagulation, regeneration, and protein stabilization. This study addresses a label-free quartz crystal microbalance (QCM) biosensor for heparin detection based on a macromolecularly imprinted polymer (MIP) as an artificial recognition element. We demonstrate the novel strategy for MIP in the form of thin film on a gold (Au) electrode with the plasma-induced graft polymerization (PIP) technique. The procedure of PIP is as follows: (i) Hexamethyldisiloxane plasma-polymerized thin film (PPF) as a pre-coating scaffold of active species for PIP (post-polymerization) is deposited on an Au electrode. (ii) The PPF/Au electrode is soaked in an water solution containing heparin (template), (2-(methacryloxy)-ethyl)trimethylammonium chloride acrylamide (functional monomer), acrylamide, and N,N-methylenebisacrylamide (crosslinker). Double bonds of monomer and crosslinker attacked by residually active species in pre-coating PPF cause radical chain reaction. Consequently, a growing polymer network of 20 nm thickness of PIP-MIP thin film is formed and grafted on the PPF/Au surface. (iii) The PIP-MIP/PPF/Au is washed by sodium chloride solution so as to remove the template. Non-imprinted polymer (NIP) is carried out like the same procedure without a template. The AFM, XPS, and QCM measurements show that the PIP process facilitates macromolecularly surface imprinting of template heparin where the template is easily removed and is rapidly rebound to PIP-MIP without a diffusional barrier. The heparin-PIP-MIP specifically binds to heparin compared with heparin analog chondroitin sulfate C (selective factor: 4.0) and a detectable range of heparin in the presence of CS (0.1 wt%) was 0.001-0.1 wt%. The PIP-NIP does not show selectivity between them. The evaluated binding kinetics are association (k = 350 ± 100 M s), dissociation (k = (5.0 ± 2.0) × 10 s), and binding (K = 1.3 ± 0.6 μM) constants, demonstrating that the PIP-MIP as a synthetic antibody can be applied to analytical chemistry.
肝素是一种高度硫酸化的糖胺聚糖,是一种重要的生物材料,具有抗凝、再生和蛋白质稳定等生物和治疗功能。本研究提出了一种基于分子印迹聚合物(MIP)作为人工识别元件的无标记石英晶体微天平(QCM)生物传感器,用于检测肝素。我们展示了一种新型策略,即在金(Au)电极上通过等离子体诱导接枝聚合(PIP)技术形成薄膜形式的 MIP。PIP 的过程如下:(i)将六甲基二硅氧烷等离子体聚合薄膜(PPF)作为用于(后聚合)的活性物种的预涂层支架沉积在 Au 电极上。(ii)将 PPF/Au 电极浸泡在含有肝素(模板)、(2-(甲基丙烯酰氧基)乙基)三甲基氯化铵丙烯酰胺(功能单体)、丙烯酰胺和 N,N-亚甲基双丙烯酰胺(交联剂)的水溶液中。单体和交联剂中的双键被预涂层 PPF 中的残留活性物种攻击,引发自由基链式反应。因此,形成了厚度为 20nm 的 PIP-MIP 薄膜的生长聚合物网络,并接枝在 PPF/Au 表面上。(iii)用氯化钠溶液洗涤 PIP-MIP/PPF/Au,以去除模板。非印迹聚合物(NIP)以相同的程序进行,无需模板。AFM、XPS 和 QCM 测量表明,PIP 过程有利于模板肝素的分子表面印迹,其中模板易于去除,并且在没有扩散障碍的情况下快速重新结合到 PIP-MIP。与肝素类似物硫酸软骨素 C(选择性因子:4.0)相比,肝素-PIP-MIP 特异性结合肝素,并且在 CS(0.1wt%)存在下检测到的肝素范围为 0.001-0.1wt%。PIP-NIP 之间没有表现出选择性。评估的结合动力学是缔合(k=350±100M s)、解离(k=(5.0±2.0)×10 s)和结合(K=1.3±0.6μM)常数,表明 PIP-MIP 作为合成抗体可应用于分析化学。