Lv Cunjing, Chen Chao, Chuang Yin-Chuan, Tseng Fan-Gang, Yin Yajun, Grey Francois, Zheng Quanshui
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China.
Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
Phys Rev Lett. 2014 Jul 11;113(2):026101. doi: 10.1103/PhysRevLett.113.026101. Epub 2014 Jul 10.
Making small liquid droplets move spontaneously on solid surfaces is a key challenge in lab-on-chip and heat exchanger technologies. Here, we report that a substrate curvature gradient can accelerate micro- and nanodroplets to high speeds on both hydrophilic and hydrophobic substrates. Experiments for microscale water droplets on tapered surfaces show a maximum speed of 0.42 m/s, 2 orders of magnitude higher than with a wettability gradient. We show that the total free energy and driving force exerted on a droplet are determined by the substrate curvature and substrate curvature gradient, respectively. Using molecular dynamics simulations, we predict nanoscale droplets moving spontaneously at over 100 m/s on tapered surfaces.
使小液滴在固体表面上自发移动是芯片实验室和热交换器技术中的一项关键挑战。在此,我们报告称,在亲水性和疏水性基板上,基板曲率梯度都能将微米级和纳米级液滴加速至高速。在锥形表面上对微米级水滴进行的实验表明,最大速度为0.42米/秒,比利用润湿性梯度时高出两个数量级。我们表明,施加在液滴上的总自由能和驱动力分别由基板曲率和基板曲率梯度决定。通过分子动力学模拟,我们预测纳米级液滴在锥形表面上能以超过100米/秒的速度自发移动。