Suppr超能文献

水冰自动脱离冻结水滴和润湿性的作用。

Spontaneous self-dislodging of freezing water droplets and the role of wettability.

机构信息

Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule Zürich, CH-8092 Zurich, Switzerland.

Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule Zürich, CH-8092 Zurich, Switzerland

出版信息

Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):11040-11045. doi: 10.1073/pnas.1705952114. Epub 2017 Sep 25.

Abstract

Spontaneous removal of liquid, solidifying liquid and solid forms of matter from surfaces, is of significant importance in nature and technology, where it finds applications ranging from self-cleaning to icephobicity and to condensation systems. However, it is a great challenge to understand fundamentally the complex interaction of rapidly solidifying, typically supercooled, droplets with surfaces, and to harvest benefit from it for the design of intrinsically icephobic materials. Here we report and explain an ice removal mechanism that manifests itself simultaneously with freezing, driving gradual self-dislodging of droplets cooled via evaporation and sublimation (low environmental pressure) or convection (atmospheric pressure) from substrates. The key to successful self-dislodging is that the freezing at the droplet free surface and the droplet contact area with the substrate do not occur simultaneously: The frozen phase boundary moves inward from the droplet free surface toward the droplet-substrate interface, which remains liquid throughout most of the process and freezes last. We observe experimentally, and validate theoretically, that the inward motion of the phase boundary near the substrate drives a gradual reduction in droplet-substrate contact. Concurrently, the droplet lifts from the substrate due to its incompressibility, density differences, and the asymmetric freezing dynamics with inward solidification causing not fully frozen mass to be displaced toward the unsolidified droplet-substrate interface. Depending on surface topography and wetting conditions, we find that this can lead to full dislodging of the ice droplet from a variety of engineered substrates, rendering the latter ice-free.

摘要

从表面自发去除液体、固化液体和固体物质的形式,在自然界和技术中具有重要意义,其应用范围从自清洁到防冰和冷凝系统。然而,从根本上理解快速固化、通常过冷的液滴与表面的复杂相互作用,并从中受益,从而设计出固有的防冰材料,这是一个巨大的挑战。在这里,我们报告并解释了一种冰去除机制,该机制与冻结同时发生,驱动通过蒸发和升华(低环境压力)或对流(大气压力)从基底冷却的液滴逐渐自行脱落。成功自行脱落的关键在于液滴自由表面处的冻结和液滴与基底的接触区域处的冻结不会同时发生:冻结相界面从液滴自由表面向内移动到液滴-基底界面,在整个过程中大部分保持液态,并在最后冻结。我们通过实验观察到,并通过理论验证,相界面在靠近基底处的向内运动导致液滴-基底接触逐渐减少。同时,由于液滴不可压缩、密度差异以及向内凝固导致不完全冻结的质量向未凝固的液滴-基底界面移动的不对称凝固动力学,液滴从基底上抬起。根据表面形貌和润湿条件,我们发现这可能导致各种工程基底上的冰滴完全脱落,从而使后者无冰。

相似文献

1
Spontaneous self-dislodging of freezing water droplets and the role of wettability.水冰自动脱离冻结水滴和润湿性的作用。
Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):11040-11045. doi: 10.1073/pnas.1705952114. Epub 2017 Sep 25.
2
Cascade Freezing of Supercooled Water Droplet Collectives.过冷水滴集合体的级联冻结
ACS Nano. 2018 Nov 27;12(11):11274-11281. doi: 10.1021/acsnano.8b05921. Epub 2018 Oct 24.
3
Surfactant solutions and porous substrates: spreading and imbibition.表面活性剂溶液与多孔基质:铺展与吸液
Adv Colloid Interface Sci. 2004 Nov 29;111(1-2):3-27. doi: 10.1016/j.cis.2004.07.007.
6
Droplet motion in one-component fluids on solid substrates with wettability gradients.具有润湿性梯度的固体基质上单组分流体中的液滴运动。
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 1):051601. doi: 10.1103/PhysRevE.85.051601. Epub 2012 May 11.
7
Are superhydrophobic surfaces best for icephobicity?超疏水表面是否最适合抗冰?
Langmuir. 2011 Mar 15;27(6):3059-66. doi: 10.1021/la104762g. Epub 2011 Feb 14.
8
Freezing-induced wetting transitions on superhydrophobic surfaces.超疏水表面上的冷冻诱导润湿转变。
Nat Phys. 2023;19(5):649-655. doi: 10.1038/s41567-023-01946-3. Epub 2023 Feb 9.
9
Imparting Icephobicity with Substrate Flexibility.赋予基材疏冰性。
Langmuir. 2017 Jul 11;33(27):6708-6718. doi: 10.1021/acs.langmuir.7b01412. Epub 2017 Jun 28.
10
On the solidification of a supercooled liquid droplet lying on a surface.关于位于表面上的过冷液滴的凝固。
J Colloid Interface Sci. 2004 Apr 1;272(1):225-34. doi: 10.1016/j.jcis.2003.10.029.

引用本文的文献

3
Micro-Scale Ice Shoveling Effect Induced by Magnetic-Responsive Microfins.磁响应微鳍片引发的微观尺度铲冰效应
Adv Sci (Weinh). 2024 Dec;11(46):e2408594. doi: 10.1002/advs.202408594. Epub 2024 Oct 23.
4
Freezing-induced wetting transitions on superhydrophobic surfaces.超疏水表面上的冷冻诱导润湿转变。
Nat Phys. 2023;19(5):649-655. doi: 10.1038/s41567-023-01946-3. Epub 2023 Feb 9.
6
Dynamic Anti-Icing Surfaces (DAIS).动态防冰表面(DAIS)。
Adv Sci (Weinh). 2021 Nov;8(21):e2101163. doi: 10.1002/advs.202101163. Epub 2021 Sep 9.
9
Leidenfrost droplet trampolining.莱顿弗罗斯特液滴弹跳
Nat Commun. 2021 Mar 19;12(1):1727. doi: 10.1038/s41467-021-21981-z.

本文引用的文献

1
Pancake bouncing on superhydrophobic surfaces.在超疏水表面上弹跳的薄煎饼。
Nat Phys. 2014 Jul;10(7):515-519. doi: 10.1038/nphys2980. Epub 2014 Jun 8.
2
Fast Dynamics of Water Droplets Freezing from the Outside In.水滴从外向内冻结的快速动力学
Phys Rev Lett. 2017 Feb 24;118(8):084101. doi: 10.1103/PhysRevLett.118.084101. Epub 2017 Feb 23.
6
Universality of tip singularity formation in freezing water drops.水滴冻结时尖端奇点形成的普适性。
Phys Rev Lett. 2014 Aug 1;113(5):054301. doi: 10.1103/PhysRevLett.113.054301. Epub 2014 Jul 31.
9
Reducing the contact time of a bouncing drop.缩短弹跳液滴的接触时间。
Nature. 2013 Nov 21;503(7476):385-8. doi: 10.1038/nature12740.
10
How superhydrophobicity breaks down.超疏水性的失效机制。
Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3254-8. doi: 10.1073/pnas.1218673110. Epub 2013 Feb 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验