Suppr超能文献

具有简单细胞和复杂细胞的V1环模型的降维

Dimensional reduction of a V1 ring model with simple and complex cells.

作者信息

Wang Cong, Tao Louis

机构信息

Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetics Engineering, College of Life Sciences, Peking University, Number 5 Summer Palace Road, Beijing, 100871, People's Republic of China.

出版信息

J Comput Neurosci. 2014 Dec;37(3):481-92. doi: 10.1007/s10827-014-0516-6. Epub 2014 Jul 27.

Abstract

In this paper, we extend a framework for constructing low-dimensional dynamical systems models of mammalian primary visual cortex to a cortical network model that incorporates the full nonlinear effects of complex cells. The procedure consists of capturing the essential dynamics in a low-dimensional subspace using empirical methods, then recasting the equations in the reduced vector space. Previously, we considered visual cortical network models consisting of only simple cells with nearly linear responses to external stimuli. Here we show that fully nonlinear effects can be incorporated by examining the dimensional reduction of an idealized ring model of V1 with both simple and complex cells. We found it expedient to divide the subspace into four separate neuronal populations: excitatory simple, excitatory complex, inhibitory simple and inhibitory complex. In order to reproduce the fluctuation-driven dynamics in this reduced space, we incorporated (1) white noises with different intensities into individual neuronal populations, and (2) firing rate estimates to capture the probability of firing due to subthreshold fluctuations. With a more accurate, fitted connectivity, our modified dimensional reduced models can reproduce the firing rates, circular variances and modulation ratios observed in the original ring model.

摘要

在本文中,我们将构建哺乳动物初级视觉皮层低维动力系统模型的框架扩展到一个包含复杂细胞全部非线性效应的皮层网络模型。该过程包括使用经验方法在低维子空间中捕捉基本动力学,然后在降维向量空间中重新构建方程。此前,我们考虑的视觉皮层网络模型仅由对外部刺激具有近似线性响应的简单细胞组成。在这里,我们表明通过研究具有简单细胞和复杂细胞的理想化V1环模型的降维,可以纳入完全非线性效应。我们发现将子空间划分为四个独立的神经元群体是很方便的:兴奋性简单细胞、兴奋性复杂细胞、抑制性简单细胞和抑制性复杂细胞。为了在这个降维空间中重现波动驱动的动力学,我们纳入了:(1) 不同强度的白噪声到各个神经元群体中,以及 (2) 放电率估计值以捕捉阈下波动引起的放电概率。通过更精确的、拟合的连接性,我们改进的降维模型可以重现原始环模型中观察到的放电率、圆形方差和调制率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验