Suppr超能文献

皮层网络中低维共享可变性的电路模型。

Circuit Models of Low-Dimensional Shared Variability in Cortical Networks.

机构信息

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA.

Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

Neuron. 2019 Jan 16;101(2):337-348.e4. doi: 10.1016/j.neuron.2018.11.034. Epub 2018 Dec 20.

Abstract

Trial-to-trial variability is a reflection of the circuitry and cellular physiology that make up a neuronal network. A pervasive yet puzzling feature of cortical circuits is that despite their complex wiring, population-wide shared spiking variability is low dimensional. Previous model cortical networks cannot explain this global variability, and rather assume it is from external sources. We show that if the spatial and temporal scales of inhibitory coupling match known physiology, networks of model spiking neurons internally generate low-dimensional shared variability that captures population activity recorded in vivo. Shifting spatial attention into the receptive field of visual neurons has been shown to differentially modulate shared variability within and between brain areas. A top-down modulation of inhibitory neurons in our network provides a parsimonious mechanism for this attentional modulation. Our work provides a critical link between observed cortical circuit structure and realistic shared neuronal variability and its modulation.

摘要

试验间的可变性反映了构成神经网络的电路和细胞生理学。皮质电路的一个普遍但令人费解的特征是,尽管它们的布线复杂,但总体的共享尖峰可变性是低维的。以前的模型皮质网络无法解释这种全局可变性,而是假设它来自外部来源。我们表明,如果抑制性耦合的空间和时间尺度与已知生理学相匹配,那么模型尖峰神经元网络内部会产生低维的共享可变性,从而捕获在体内记录的群体活动。将空间注意力转移到视觉神经元的感受野中已被证明可以在大脑区域内和区域之间差异调节共享可变性。我们网络中抑制性神经元的自上而下调制为这种注意力调制提供了一个简约的机制。我们的工作在观察到的皮质电路结构与现实的共享神经元可变性及其调制之间提供了关键联系。

相似文献

1
Circuit Models of Low-Dimensional Shared Variability in Cortical Networks.
Neuron. 2019 Jan 16;101(2):337-348.e4. doi: 10.1016/j.neuron.2018.11.034. Epub 2018 Dec 20.
2
Stimulus Dependence of Correlated Variability across Cortical Areas.
J Neurosci. 2016 Jul 13;36(28):7546-56. doi: 10.1523/JNEUROSCI.0504-16.2016.
3
Attentional modulation of neuronal variability in circuit models of cortex.
Elife. 2017 Jun 7;6:e23978. doi: 10.7554/eLife.23978.
4
Correlated variability and its attentional modulation depend on anatomical connectivity.
Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2318841121. doi: 10.1073/pnas.2318841121. Epub 2024 Aug 22.
5
Invariant computations in local cortical networks with balanced excitation and inhibition.
Nat Neurosci. 2005 Feb;8(2):194-201. doi: 10.1038/nn1391. Epub 2005 Jan 23.
6
The spatial structure of correlated neuronal variability.
Nat Neurosci. 2017 Jan;20(1):107-114. doi: 10.1038/nn.4433. Epub 2016 Oct 31.
7
Inhibitory interneurons decorrelate excitatory cells to drive sparse code formation in a spiking model of V1.
J Neurosci. 2013 Mar 27;33(13):5475-85. doi: 10.1523/JNEUROSCI.4188-12.2013.
8
Stimulus competition by inhibitory interference.
Neural Comput. 2005 Nov;17(11):2421-53. doi: 10.1162/0899766054796905.
9
On the Structure of Neuronal Population Activity under Fluctuations in Attentional State.
J Neurosci. 2016 Feb 3;36(5):1775-89. doi: 10.1523/JNEUROSCI.2044-15.2016.
10
Attentional modulation of firing rate and synchrony in a model cortical network.
J Comput Neurosci. 2006 Jun;20(3):247-64. doi: 10.1007/s10827-006-6358-0. Epub 2006 Apr 22.

引用本文的文献

1
Maximum likelihood estimation of spatially dependent interactions in large populations of cortical neurons.
Front Comput Neurosci. 2025 Aug 13;19:1639829. doi: 10.3389/fncom.2025.1639829. eCollection 2025.
2
Global and local origins of trial-to-trial spike count variability in visual cortex.
bioRxiv. 2025 Aug 12:2025.08.08.669442. doi: 10.1101/2025.08.08.669442.
3
Stochastic activity in low-rank recurrent neural networks.
PLoS Comput Biol. 2025 Aug 18;21(8):e1013371. doi: 10.1371/journal.pcbi.1013371.
4
Stochastic activity in low-rank recurrent neural networks.
bioRxiv. 2025 Jul 11:2025.04.22.649933. doi: 10.1101/2025.04.22.649933.
5
Interactions across hemispheres in prefrontal cortex reflect global cognitive processing.
bioRxiv. 2025 Jun 13:2025.06.12.659406. doi: 10.1101/2025.06.12.659406.
8
Circuit-Based Understanding of Fine Spatial Scale Clustering of Orientation Tuning in Mouse Visual Cortex.
bioRxiv. 2025 Feb 13:2025.02.11.637768. doi: 10.1101/2025.02.11.637768.
9
Predicting the effect of micro-stimulation on macaque prefrontal activity based on spontaneous circuit dynamics.
Phys Rev Res. 2024 Dec;5(4). doi: 10.1103/physrevresearch.5.043211. Epub 2024 Dec 7.
10
Neuronal heterogeneity of normalization strength in a circuit model.
bioRxiv. 2024 Nov 22:2024.11.22.624903. doi: 10.1101/2024.11.22.624903.

本文引用的文献

1
Computational Neuroscience: Mathematical and Statistical Perspectives.
Annu Rev Stat Appl. 2018 Mar;5:183-214. doi: 10.1146/annurev-statistics-041715-033733. Epub 2017 Dec 8.
2
Coherent chaos in a recurrent neural network with structured connectivity.
PLoS Comput Biol. 2018 Dec 13;14(12):e1006309. doi: 10.1371/journal.pcbi.1006309. eCollection 2018 Dec.
3
Linking Connectivity, Dynamics, and Computations in Low-Rank Recurrent Neural Networks.
Neuron. 2018 Aug 8;99(3):609-623.e29. doi: 10.1016/j.neuron.2018.07.003. Epub 2018 Jul 26.
5
Normalization and the Cholinergic Microcircuit: A Unified Basis for Attention.
Trends Cogn Sci. 2018 May;22(5):422-437. doi: 10.1016/j.tics.2018.02.011. Epub 2018 Mar 22.
6
Feedback determines the structure of correlated variability in primary visual cortex.
Nat Neurosci. 2018 Apr;21(4):598-606. doi: 10.1038/s41593-018-0089-1. Epub 2018 Feb 26.
7
Learning and attention reveal a general relationship between population activity and behavior.
Science. 2018 Jan 26;359(6374):463-465. doi: 10.1126/science.aao0284.
8
Attentional modulation of neuronal variability in circuit models of cortex.
Elife. 2017 Jun 7;6:e23978. doi: 10.7554/eLife.23978.
9
Spatiotemporal Dynamics and Reliable Computations in Recurrent Spiking Neural Networks.
Phys Rev Lett. 2017 Jan 6;118(1):018103. doi: 10.1103/PhysRevLett.118.018103.
10
Correlations demystified.
Nat Neurosci. 2016 Dec 27;20(1):6-8. doi: 10.1038/nn.4455.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验