Suppr超能文献

皮层网络中低维共享可变性的电路模型。

Circuit Models of Low-Dimensional Shared Variability in Cortical Networks.

机构信息

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA.

Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

Neuron. 2019 Jan 16;101(2):337-348.e4. doi: 10.1016/j.neuron.2018.11.034. Epub 2018 Dec 20.

Abstract

Trial-to-trial variability is a reflection of the circuitry and cellular physiology that make up a neuronal network. A pervasive yet puzzling feature of cortical circuits is that despite their complex wiring, population-wide shared spiking variability is low dimensional. Previous model cortical networks cannot explain this global variability, and rather assume it is from external sources. We show that if the spatial and temporal scales of inhibitory coupling match known physiology, networks of model spiking neurons internally generate low-dimensional shared variability that captures population activity recorded in vivo. Shifting spatial attention into the receptive field of visual neurons has been shown to differentially modulate shared variability within and between brain areas. A top-down modulation of inhibitory neurons in our network provides a parsimonious mechanism for this attentional modulation. Our work provides a critical link between observed cortical circuit structure and realistic shared neuronal variability and its modulation.

摘要

试验间的可变性反映了构成神经网络的电路和细胞生理学。皮质电路的一个普遍但令人费解的特征是,尽管它们的布线复杂,但总体的共享尖峰可变性是低维的。以前的模型皮质网络无法解释这种全局可变性,而是假设它来自外部来源。我们表明,如果抑制性耦合的空间和时间尺度与已知生理学相匹配,那么模型尖峰神经元网络内部会产生低维的共享可变性,从而捕获在体内记录的群体活动。将空间注意力转移到视觉神经元的感受野中已被证明可以在大脑区域内和区域之间差异调节共享可变性。我们网络中抑制性神经元的自上而下调制为这种注意力调制提供了一个简约的机制。我们的工作在观察到的皮质电路结构与现实的共享神经元可变性及其调制之间提供了关键联系。

相似文献

1
Circuit Models of Low-Dimensional Shared Variability in Cortical Networks.皮层网络中低维共享可变性的电路模型。
Neuron. 2019 Jan 16;101(2):337-348.e4. doi: 10.1016/j.neuron.2018.11.034. Epub 2018 Dec 20.
4
Correlated variability and its attentional modulation depend on anatomical connectivity.相关变异性及其注意力调制取决于解剖连接。
Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2318841121. doi: 10.1073/pnas.2318841121. Epub 2024 Aug 22.
6
The spatial structure of correlated neuronal variability.相关神经元变异性的空间结构。
Nat Neurosci. 2017 Jan;20(1):107-114. doi: 10.1038/nn.4433. Epub 2016 Oct 31.
8
Stimulus competition by inhibitory interference.通过抑制性干扰进行刺激竞争。
Neural Comput. 2005 Nov;17(11):2421-53. doi: 10.1162/0899766054796905.

引用本文的文献

3
Stochastic activity in low-rank recurrent neural networks.低秩递归神经网络中的随机活动。
PLoS Comput Biol. 2025 Aug 18;21(8):e1013371. doi: 10.1371/journal.pcbi.1013371.
4
Stochastic activity in low-rank recurrent neural networks.低秩递归神经网络中的随机活动。
bioRxiv. 2025 Jul 11:2025.04.22.649933. doi: 10.1101/2025.04.22.649933.

本文引用的文献

1
Computational Neuroscience: Mathematical and Statistical Perspectives.计算神经科学:数学与统计视角
Annu Rev Stat Appl. 2018 Mar;5:183-214. doi: 10.1146/annurev-statistics-041715-033733. Epub 2017 Dec 8.
2
Coherent chaos in a recurrent neural network with structured connectivity.具有结构连接的递归神经网络中的相干混沌。
PLoS Comput Biol. 2018 Dec 13;14(12):e1006309. doi: 10.1371/journal.pcbi.1006309. eCollection 2018 Dec.
5
Normalization and the Cholinergic Microcircuit: A Unified Basis for Attention.正常化与胆碱能微回路:注意力的统一基础
Trends Cogn Sci. 2018 May;22(5):422-437. doi: 10.1016/j.tics.2018.02.011. Epub 2018 Mar 22.
10
Correlations demystified.相关性揭秘。
Nat Neurosci. 2016 Dec 27;20(1):6-8. doi: 10.1038/nn.4455.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验