Suppr超能文献

石莼(EctoGEM)的基因组规模代谢网络:研究褐藻生理学及其他领域的资源。

The genome-scale metabolic network of Ectocarpus siliculosus (EctoGEM): a resource to study brown algal physiology and beyond.

作者信息

Prigent Sylvain, Collet Guillaume, Dittami Simon M, Delage Ludovic, Ethis de Corny Floriane, Dameron Olivier, Eveillard Damien, Thiele Sven, Cambefort Jeanne, Boyen Catherine, Siegel Anne, Tonon Thierry

机构信息

Université de Rennes 1, IRISA UMR 6074, Campus de Beaulieu, 35042, Rennes, France; CNRS, IRISA UMR 6074, Campus de Beaulieu, 35042, Rennes, France; Centre Rennes-Bretagne-Atlantique, Projet Dyliss, INRIA, Campus de Beaulieu, 35042, Rennes Cedex, France.

出版信息

Plant J. 2014 Oct;80(2):367-81. doi: 10.1111/tpj.12627. Epub 2014 Aug 27.

Abstract

Brown algae (stramenopiles) are key players in intertidal ecosystems, and represent a source of biomass with several industrial applications. Ectocarpus siliculosus is a model to study the biology of these organisms. Its genome has been sequenced and a number of post-genomic tools have been implemented. Based on this knowledge, we report the reconstruction and analysis of a genome-scale metabolic network for E. siliculosus, EctoGEM (http://ectogem.irisa.fr). This atlas of metabolic pathways consists of 1866 reactions and 2020 metabolites, and its construction was performed by means of an integrative computational approach for identifying metabolic pathways, gap filling and manual refinement. The capability of the network to produce biomass was validated by flux balance analysis. EctoGEM enabled the reannotation of 56 genes within the E. siliculosus genome, and shed light on the evolution of metabolic processes. For example, E. siliculosus has the potential to produce phenylalanine and tyrosine from prephenate and arogenate, but does not possess a phenylalanine hydroxylase, as is found in other stramenopiles. It also possesses the complete eukaryote molybdenum co-factor biosynthesis pathway, as well as a second molybdopterin synthase that was most likely acquired via horizontal gene transfer from cyanobacteria by a common ancestor of stramenopiles. EctoGEM represents an evolving community resource to gain deeper understanding of the biology of brown algae and the diversification of physiological processes. The integrative computational method applied for its reconstruction will be valuable to set up similar approaches for other organisms distant from biological benchmark models.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验