Prigent Sylvain, Collet Guillaume, Dittami Simon M, Delage Ludovic, Ethis de Corny Floriane, Dameron Olivier, Eveillard Damien, Thiele Sven, Cambefort Jeanne, Boyen Catherine, Siegel Anne, Tonon Thierry
Université de Rennes 1, IRISA UMR 6074, Campus de Beaulieu, 35042, Rennes, France; CNRS, IRISA UMR 6074, Campus de Beaulieu, 35042, Rennes, France; Centre Rennes-Bretagne-Atlantique, Projet Dyliss, INRIA, Campus de Beaulieu, 35042, Rennes Cedex, France.
Plant J. 2014 Oct;80(2):367-81. doi: 10.1111/tpj.12627. Epub 2014 Aug 27.
Brown algae (stramenopiles) are key players in intertidal ecosystems, and represent a source of biomass with several industrial applications. Ectocarpus siliculosus is a model to study the biology of these organisms. Its genome has been sequenced and a number of post-genomic tools have been implemented. Based on this knowledge, we report the reconstruction and analysis of a genome-scale metabolic network for E. siliculosus, EctoGEM (http://ectogem.irisa.fr). This atlas of metabolic pathways consists of 1866 reactions and 2020 metabolites, and its construction was performed by means of an integrative computational approach for identifying metabolic pathways, gap filling and manual refinement. The capability of the network to produce biomass was validated by flux balance analysis. EctoGEM enabled the reannotation of 56 genes within the E. siliculosus genome, and shed light on the evolution of metabolic processes. For example, E. siliculosus has the potential to produce phenylalanine and tyrosine from prephenate and arogenate, but does not possess a phenylalanine hydroxylase, as is found in other stramenopiles. It also possesses the complete eukaryote molybdenum co-factor biosynthesis pathway, as well as a second molybdopterin synthase that was most likely acquired via horizontal gene transfer from cyanobacteria by a common ancestor of stramenopiles. EctoGEM represents an evolving community resource to gain deeper understanding of the biology of brown algae and the diversification of physiological processes. The integrative computational method applied for its reconstruction will be valuable to set up similar approaches for other organisms distant from biological benchmark models.
褐藻(不等鞭毛类)是潮间带生态系统中的关键生物,也是一种具有多种工业应用的生物质来源。硅藻是研究这些生物生物学特性的模式生物。其基因组已被测序,并且已经实施了许多后基因组工具。基于这些知识,我们报告了硅藻基因组规模代谢网络EctoGEM(http://ectogem.irisa.fr)的重建和分析。这个代谢途径图谱由1866个反应和2020种代谢物组成,其构建是通过一种综合计算方法来识别代谢途径、填补缺口并进行人工优化。通过通量平衡分析验证了该网络产生生物质的能力。EctoGEM使得对硅藻基因组中的56个基因进行了重新注释,并揭示了代谢过程的进化。例如,硅藻有潜力从预苯酸和莽草酸生成苯丙氨酸和酪氨酸,但不像其他不等鞭毛类那样拥有苯丙氨酸羟化酶。它还拥有完整的真核生物钼辅因子生物合成途径,以及第二种钼蝶呤合酶,很可能是通过水平基因转移从蓝细菌那里由不等鞭毛类的一个共同祖先获得的。EctoGEM是一个不断发展的社区资源,有助于更深入地了解褐藻生物学和生理过程的多样化。应用于其重建的综合计算方法对于为其他远离生物学基准模型的生物建立类似方法将具有重要价值。