Kania Agnieszka, Pilch Mariusz, Rutkowska-Zbik Dorota, Susz Anna, Stochel Grażyna, Fiedor Leszek
Faculty of Chemistry, Jagiellonian University , ul. Ingardena 3, 30-060 Kraków, Poland.
Inorg Chem. 2014 Aug 18;53(16):8473-84. doi: 10.1021/ic501029b. Epub 2014 Jul 29.
High pressure in combination with optical spectroscopy was used to gain insights into the interactions between Mg(2+), Zn(2+), and Ni(2+) ions and macrocyclic ligands of porphyrinoid type. In parallel, the central metal ion-macrocycle bonding was investigated using theoretical approaches. The symmetry properties of the orbitals participating in this bonding were analyzed, and pigment geometries and pressure/ligation effects were computed within DFT. Bacteriopheophytin a was applied as both a model chelator and a highly specific spectroscopic probe. The analysis of solvent and pressure effects on the spectral properties of the model Mg(2+), Zn(2+), and Ni(2+) complexes with bacteriopheophytin a shows that various chemical bonds are formed in the central pocket, depending on the valence configuration of the central metal ion. In addition, the character of this bonding depends on symmetry of the macrocyclic system. Since in most cases it is not coordinative bonding, these results challenge the conventional view of metal ion bonding in such complexes. In (labile) complexes with the main group metals, the metal ion-macrocycle interaction is mostly electrostatic. Significantly, water molecules are not preferred as a second axial ligand in such complexes, mainly due to the entropic constraints. The metal ions with a closed d shell may form (stable) complexes with the macrocycle via classical coordination bonds, engaging their p and s orbitals. Transition metals, due to the unfilled d shell, do form much more stable complexes, because of strong bonding via both coordination and covalent interactions. These conclusions are confirmed by DFT computations and theoretical considerations, which altogether provide the basis to propose a consistent and general mechanism of how the central metal ion and its interactions with the core nitrogens govern the physicochemical properties of metalloporphyrinoids.
高压结合光谱学方法用于深入了解Mg(2+)、Zn(2+)和Ni(2+)离子与卟啉类大环配体之间的相互作用。同时,使用理论方法研究中心金属离子与大环的键合。分析了参与这种键合的轨道的对称性质,并在密度泛函理论(DFT)内计算了色素的几何结构以及压力/配位效应。细菌叶绿素a既用作模型螯合剂,又用作高特异性光谱探针。对溶剂和压力对与细菌叶绿素a形成的模型Mg(2+)、Zn(2+)和Ni(2+)配合物光谱性质的影响分析表明,根据中心金属离子的价态构型,中心口袋中会形成各种化学键。此外,这种键合的性质取决于大环体系的对称性。由于在大多数情况下它不是配位键,这些结果挑战了此类配合物中金属离子键合的传统观点。在与主族金属形成的(不稳定)配合物中,金属离子与大环的相互作用主要是静电作用。值得注意的是,在这类配合物中,水分子并非优先作为第二轴向配体,主要是由于熵的限制。具有封闭d壳层的金属离子可通过经典配位键与大环形成(稳定)配合物,利用其p轨道和s轨道。过渡金属由于d壳层未充满,由于通过配位和共价相互作用的强键合,确实会形成更稳定的配合物。这些结论得到了DFT计算和理论考量的证实,它们共同为提出一种关于中心金属离子及其与核心氮原子的相互作用如何控制金属卟啉类化合物物理化学性质的一致且通用的机制提供了基础。