Chen Qingxia, Zeng Donglin, Ibrahim Joseph G, Chen Ming-Hui, Pan Zhiying, Xue Xiaodong
Department of Biostatistics, Vanderbilt University, Nashville, TN, 37232, USA,
Lifetime Data Anal. 2015 Apr;21(2):259-79. doi: 10.1007/s10985-014-9301-0. Epub 2014 Jul 30.
The hazard ratio derived from the Cox model is a commonly used summary statistic to quantify a treatment effect with a time-to-event outcome. The proportional hazards assumption of the Cox model, however, is frequently violated in practice and many alternative models have been proposed in the statistical literature. Unfortunately, the regression coefficients obtained from different models are often not directly comparable. To overcome this problem, we propose a family of weighted hazard ratio measures that are based on the marginal survival curves or marginal hazard functions, and can be estimated using readily available output from various modeling approaches. The proposed transformation family includes the transformations considered by Schemper et al. (Statist Med 28:2473-2489, 2009) as special cases. In addition, we propose a novel estimate of the weighted hazard ratio based on the maximum departure from the null hypothesis within the transformation family, and develop a Kolmogorov[Formula: see text]Smirnov type of test statistic based on this estimate. Simulation studies show that when the hazard functions of two groups either converge or diverge, this new estimate yields a more powerful test than tests based on the individual transformations recommended in Schemper et al. (Statist Med 28:2473-2489, 2009), with a similar magnitude of power loss when the hazards cross. The proposed estimates and test statistics are applied to a colorectal cancer clinical trial.
从Cox模型得出的风险比是一种常用的汇总统计量,用于量化具有事件发生时间结局的治疗效果。然而,Cox模型的比例风险假设在实际中经常被违反,并且统计文献中已经提出了许多替代模型。不幸的是,从不同模型获得的回归系数通常不能直接比较。为了克服这个问题,我们提出了一类基于边际生存曲线或边际风险函数的加权风险比度量,可以使用各种建模方法容易获得的输出来进行估计。所提出的变换族包括Schemper等人(《统计医学》28:2473 - 2489,2009年)所考虑的变换作为特殊情况。此外,我们基于变换族内与零假设的最大偏离提出了一种加权风险比的新估计,并基于此估计开发了一种柯尔莫哥洛夫 - 斯米尔诺夫类型的检验统计量。模拟研究表明,当两组的风险函数收敛或发散时,这种新估计比基于Schemper等人(《统计医学》28:2473 - 2489,2009年)推荐的单个变换的检验产生更强大的检验,并且当风险交叉时具有相似程度的检验效能损失。所提出的估计和检验统计量应用于一项结直肠癌临床试验。