Hess K R
Department of Patient Studies, University of Texas M.D. Anderson Cancer Center, Houston 77030-4095.
Stat Med. 1994 May 30;13(10):1045-62. doi: 10.1002/sim.4780131007.
Proportional hazards (or Cox) regression is a popular method for modelling the effects of prognostic factors on survival. Use of cubic spline functions to model time-by-covariate interactions in Cox regression allows investigation of the shape of a possible covariate-time dependence without having to specify a specific functional form. Cubic spline functions allow one to graph such time-by-covariate interactions, to test formally for the proportional hazards assumption, and also to test for non-linearity of the time-by-covariate interaction. The functions can be fitted with existing software using relatively few parameters; the regression coefficients are estimated using standard maximum likelihood methods.
比例风险(或Cox)回归是一种用于对预后因素对生存的影响进行建模的常用方法。在Cox回归中使用三次样条函数来对时间与协变量的交互作用进行建模,可以在无需指定特定函数形式的情况下,研究可能的协变量-时间依赖性的形状。三次样条函数允许人们绘制这种时间与协变量的交互作用图,正式检验比例风险假设,还可以检验时间与协变量交互作用的非线性。这些函数可以使用现有的软件,用相对较少的参数进行拟合;回归系数使用标准的最大似然方法进行估计。