Jung Jieun, Ohkubo Kei, Goldberg David P, Fukuzumi Shunichi
Department of Material and Life Science, Graduate School of Engineering, Osaka University and ALCA, Japan Science and Technology Agency (JST) , 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.
J Phys Chem A. 2014 Aug 14;118(32):6223-9. doi: 10.1021/jp505860f. Epub 2014 Jul 31.
Photocatalytic oxygenation of 10-methyl-9,10-dihydroacridine (AcrH2) by dioxygen (O2) with a manganese porphyrin [(P)Mn(III): 5,10,15,20-tetrakis-(2,4,6-trimethylphenyl)porphinatomanganese(III) hydroxide [(TMP)Mn(III)(OH)] (1) or 5,10,15,20-tetrakis(pentafluorophenyl)porphyrinatomanganese(III) acetate [(TPFPP)Mn(III)(CH3COO)] (2)] occurred to yield 10-methyl-(9,10H)-acridone (Acr═O) in an oxygen-saturated benzonitrile (PhCN) solution under visible light irradiation. The photocatalytic reactivity of (P)Mn(III) in the presence of O2 is in proportion to concentrations of AcrH2 or O2 with the maximum turnover numbers of 17 and 6 for 1 and 2, respectively. The quantum yield with 1 was determined to be 0.14%. Deuterium kinetic isotope effects (KIEs) were observed with KIE = 22 for 1 and KIE = 6 for 2, indicating that hydrogen-atom transfer from AcrH2 is involved in the rate-determining step of the photocatalytic reaction. Femtosecond transient absorption measurements are consistent with photoexcitation of (P)Mn(III), resulting in intersystem crossing from a tripquintet excited state to a tripseptet excited state. A mechanism is proposed where the tripseptet excited state reacts with O2 to produce a putative (P)Mn(IV) superoxo complex. Hydrogen-atom transfer from AcrH2 to (P)Mn(IV)(O2(•-)) generating a hydroperoxo complex (P)Mn(IV)(OOH) and AcrH(•) is likely the rate-determining step, in competition with back electron transfer to regenerate the ground state (P)Mn(III) and O2. The subsequent reductive O-O bond cleavage by AcrH(•) may occur rapidly inside of the reaction cage to produce (P)Mn(V)(O) and AcrH(OH), followed by the oxidation of AcrH(OH) by (P)Mn(V)(O) to yield Acr═O with regeneration of (P)Mn(III).
在可见光照射下,在氧饱和的苯甲腈(PhCN)溶液中,二氧(O₂)与锰卟啉[(P)Mn(III):5,10,15,20-四(2,4,6-三甲基苯基)卟啉锰(III)氢氧化物[(TMP)Mn(III)(OH)](1)或5,10,15,20-四(五氟苯基)卟啉锰(III)乙酸盐[(TPFPP)Mn(III)(CH₃COO)](2)]对10-甲基-9,10-二氢吖啶(AcrH₂)进行光催化氧化,生成10-甲基-(9,10H)-吖啶酮(Acr═O)。在O₂存在下,(P)Mn(III)的光催化反应活性与AcrH₂或O₂的浓度成正比,1和2的最大周转数分别为17和6。1的量子产率测定为0.14%。观察到氘动力学同位素效应(KIEs),1的KIE = 22,2的KIE = 6,表明来自AcrH₂的氢原子转移参与了光催化反应的速率决定步骤。飞秒瞬态吸收测量结果与(P)Mn(III)的光激发一致,导致从三重五重激发态到三重七重激发态的系间窜越。提出了一种机制,其中三重七重激发态与O₂反应生成假定的(P)Mn(IV)超氧配合物。从AcrH₂到(P)Mn(IV)(O₂•⁻)的氢原子转移生成氢过氧配合物(P)Mn(IV)(OOH)和AcrH•可能是速率决定步骤,与回电子转移竞争以再生基态(P)Mn(III)和O₂。随后,AcrH•对O - O键的还原裂解可能在反应笼内迅速发生,生成(P)Mn(V)(O)和AcrH(OH),接着(P)Mn(V)(O)将AcrH(OH)氧化生成Acr═O并再生(P)Mn(III)。