Systems Biology Program, Centre for Genomic Regulation (CRG), and Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain.
Systems Biology Program, Centre for Genomic Regulation (CRG), and Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain. Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain.
Science. 2014 Aug 1;345(6196):566-70. doi: 10.1126/science.1252960.
During limb development, digits emerge from the undifferentiated mesenchymal tissue that constitutes the limb bud. It has been proposed that this process is controlled by a self-organizing Turing mechanism, whereby diffusible molecules interact to produce a periodic pattern of digital and interdigital fates. However, the identities of the molecules remain unknown. By combining experiments and modeling, we reveal evidence that a Turing network implemented by Bmp, Sox9, and Wnt drives digit specification. We develop a realistic two-dimensional simulation of digit patterning and show that this network, when modulated by morphogen gradients, recapitulates the expression patterns of Sox9 in the wild type and in perturbation experiments. Our systems biology approach reveals how a combination of growth, morphogen gradients, and a self-organizing Turing network can achieve robust and reproducible pattern formation.
在肢体发育过程中,手指从构成肢体芽的未分化间充质组织中出现。有人提出,这个过程是由一个自我组织的图灵机制控制的,在这个机制中,扩散分子相互作用,产生数字和指间的命运的周期性模式。然而,这些分子的身份仍然未知。通过结合实验和建模,我们揭示了证据表明,由 Bmp、Sox9 和 Wnt 实现的图灵网络驱动数字指定。我们开发了一个现实的二维数字模式形成模拟,并表明,当这个网络被形态发生梯度调制时,它再现了 Sox9 在野生型和扰动实验中的表达模式。我们的系统生物学方法揭示了生长、形态发生梯度和自我组织的图灵网络的组合如何实现稳健和可重复的模式形成。