Majka Maciej, Becker Nils B, Ten Wolde Pieter Rein, Zagorski Marcin, Sokolowski Thomas R
Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, Kraków, Poland.
Department of Physics, East Carolina University, Greenville, North Carolina, United States of America.
PLoS Comput Biol. 2024 Dec 2;20(12):e1012555. doi: 10.1371/journal.pcbi.1012555. eCollection 2024 Dec.
Gene expression patterns in developing organisms are established by groups of cross-regulating target genes that are driven by morphogen gradients. As development progresses, morphogen activity is reduced, leaving the emergent pattern without stabilizing positional cues and at risk of rapid deterioration due to the inherently noisy biochemical processes at the cellular level. But remarkably, gene expression patterns remain spatially stable and reproducible over long developmental time spans in many biological systems. Here we combine spatial-stochastic simulations with an enhanced sampling method (Non-Stationary Forward Flux Sampling) and a recently developed stability theory to address how spatiotemporal integrity of a gene expression pattern is maintained in developing tissue lacking morphogen gradients. Using a minimal embryo model consisting of spatially coupled biochemical reactor volumes, we study a prototypical stripe pattern in which weak cross-repression between nearest neighbor expression domains alternates with strong repression between next-nearest neighbor domains, inspired by the gap gene system in the Drosophila embryo. We find that tuning of the weak repressive interactions to an optimal level can prolong stability of the expression patterns by orders of magnitude, enabling stable patterns over developmentally relevant times in the absence of morphogen gradients. The optimal parameter regime found in simulations of the embryo model closely agrees with the predictions of our coarse-grained stability theory. To elucidate the origin of stability, we analyze a reduced phase space defined by two measures of pattern asymmetry. We find that in the optimal regime, intact patterns are protected via restoring forces that counteract random perturbations and give rise to a metastable basin. Together, our results demonstrate that metastable attractors can emerge as a property of stochastic gene expression patterns even without system-wide positional cues, provided that the gene regulatory interactions shaping the pattern are optimally tuned.
发育生物体内的基因表达模式是由受形态发生素梯度驱动的交叉调节靶基因群建立的。随着发育的进行,形态发生素活性降低,导致出现的模式缺乏稳定的位置线索,并且由于细胞水平上固有的嘈杂生化过程而有迅速退化的风险。但值得注意的是,在许多生物系统中,基因表达模式在长时间的发育过程中仍保持空间稳定和可重复性。在这里,我们将空间随机模拟与一种增强采样方法(非平稳前向通量采样)以及最近发展的稳定性理论相结合,以探讨在缺乏形态发生素梯度的发育组织中,基因表达模式的时空完整性是如何维持的。我们使用一个由空间耦合生化反应器体积组成的最小胚胎模型,研究一种典型的条纹模式,其中最近邻表达域之间的弱交叉抑制与次近邻域之间的强抑制交替出现,其灵感来自果蝇胚胎中的间隙基因系统。我们发现,将弱抑制相互作用调节到最佳水平可以将表达模式的稳定性延长几个数量级,从而在没有形态发生素梯度的情况下,在与发育相关的时间内实现稳定的模式。在胚胎模型模拟中发现的最佳参数范围与我们的粗粒度稳定性理论的预测非常吻合。为了阐明稳定性的起源,我们分析了由两种模式不对称度量定义的简化相空间。我们发现,在最佳状态下,完整的模式通过恢复力得到保护,这些恢复力可以抵消随机扰动并产生一个亚稳态盆地。总之,我们的结果表明,即使没有全系统的位置线索,只要塑造模式的基因调控相互作用得到最佳调整,亚稳态吸引子也可以作为随机基因表达模式的一种属性出现。