Salter P S, Baum M, Alexeev I, Schmidt M, Booth M J
Opt Express. 2014 Jul 28;22(15):17644-56. doi: 10.1364/OE.22.017644.
The spherical aberration generated when focusing from air into another medium limits the depth at which ultrafast laser machining can be accurately maintained. We investigate how the depth range may be extended using aberration correction via a liquid crystal spatial light modulator (SLM), in both single point and parallel multi-point fabrication in fused silica. At a moderate numerical aperture (NA = 0.5), high fidelity fabrication with a significant level of parallelisation is demonstrated at the working distance of the objective lens, corresponding to a depth in the glass of 2.4 mm. With a higher numerical aperture (NA = 0.75) objective lens, single point fabrication is demonstrated to a depth of 1 mm utilising the full NA, and deeper with reduced NA, while maintaining high repeatability. We present a complementary theoretical model that enables prediction of the effectiveness of SLM based correction for different aberration magnitudes.
从空气聚焦到另一种介质时产生的球差限制了超快激光加工能够精确维持的深度。我们研究了如何通过液晶空间光调制器(SLM)进行像差校正来扩展深度范围,这一过程涉及在熔融石英中的单点和并行多点制造。在中等数值孔径(NA = 0.5)下,在物镜的工作距离处展示了具有显著并行化水平的高保真制造,对应于玻璃中2.4毫米的深度。对于更高数值孔径(NA = 0.75)的物镜,利用全数值孔径可实现单点制造至1毫米深度,在减小数值孔径的情况下可制造得更深,同时保持高重复性。我们提出了一个补充理论模型,该模型能够预测基于SLM的校正对于不同像差大小的有效性。