Suppr超能文献

通过在焦点处创建高纯度纵向光场,在空气中以800纳米波长在远场实现激光材料加工中10纳米特征尺寸的高纵横比。

Realising high aspect ratio 10 nm feature size in laser materials processing in air at 800 nm wavelength in the far-field by creating a high purity longitudinal light field at focus.

作者信息

Li Zhaoqing, Allegre Olivier, Li Lin

机构信息

Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, M13 9PL, UK.

出版信息

Light Sci Appl. 2022 Dec 2;11(1):339. doi: 10.1038/s41377-022-00962-x.

Abstract

In semiconductor and data storage device manufacturing, it is desirable to produce feature sizes less than 30 nm with a high depth-to-width aspect ratio on the target material rapidly at a low cost. However, optical diffraction limits the smallest focused laser beam diameter to around half of the laser wavelength (λ/2). The existing approach to achieving nanoscale fabrication is mainly based on costly extreme ultraviolet (EUV) technology operating within the diffraction limit. In this paper, a new method is shown to achieve materials processing resolution down to 10 nm (λ/80) at an infrared laser wavelength of around 800 nm in the far-field, in air, well beyond the optical diffraction limit. A high-quality longitudinal field with a purity of 94.7% is generated to realise this super-resolution. Both experiments and theoretical modelling have been carried out to verify and understand the findings. The ablation craters induced on polished silicon, copper, and sapphire are compared for different types of light fields. Holes of 10-30 nm in diameter are produced on sapphire with a depth-to-width aspect ratio of over 16 and a zero taper with a single pulse at 100-120 nJ pulse energy. Such high aspect ratio sub-50 nm holes produced with single pulse laser irradiation are rarely seen in laser processing, indicating a new material removal mechanism with the longitudinal field. The working distance (lens to target) is around 170 µm, thus the material processing is in the far field. Tapered nano-holes can also be produced by adjusting the lens to the target distance.

摘要

在半导体和数据存储设备制造中,期望以低成本快速在目标材料上制造出深度与宽度比高且特征尺寸小于30纳米的结构。然而,光学衍射将聚焦激光束的最小直径限制在激光波长的一半左右(λ/2)。现有的实现纳米级制造的方法主要基于在衍射极限内运行的昂贵的极紫外(EUV)技术。本文展示了一种新方法,可在远场空气中,在约800纳米的红外激光波长下实现低至10纳米(λ/80)的材料加工分辨率,远超光学衍射极限。通过产生纯度为94.7%的高质量纵向场来实现这种超分辨率。已进行实验和理论建模以验证和理解这些发现。针对不同类型的光场,比较了在抛光硅、铜和蓝宝石上诱导的烧蚀坑。在蓝宝石上产生了直径为10 - 30纳米的孔,深度与宽度比超过16,在100 - 120纳焦脉冲能量下单脉冲时锥度为零。在激光加工中,单脉冲激光辐照产生如此高纵横比的亚50纳米孔很少见,这表明存在一种基于纵向场的新的材料去除机制。工作距离(透镜到目标)约为170微米,因此材料加工处于远场。通过调整透镜到目标的距离也可以产生锥形纳米孔。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8561/9715648/e86f933e7915/41377_2022_962_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验