Suppr超能文献

在噬菌体λ中,溶原化的确定之前是对晚期裂解调节因子Q的长时间敏感阶段。

Commitment to lysogeny is preceded by a prolonged period of sensitivity to the late lytic regulator Q in bacteriophage λ.

作者信息

Svenningsen Sine Lo, Semsey Szabolcs

机构信息

Department of Biology, University of Copenhagen, Copenhagen, Denmark.

Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

出版信息

J Bacteriol. 2014 Oct;196(20):3582-8. doi: 10.1128/JB.01705-14. Epub 2014 Aug 4.

Abstract

A key event in development is the irreversible commitment to a particular cell fate, which may be concurrent with or delayed with respect to the initial cell fate decision. In this work, we use the paradigmatic bacteriophage λ lysis-lysogeny decision circuit to study the timing of commitment. The lysis-lysogeny decision is made based on the expression trajectory of CII. The chosen developmental strategy is manifested by repression of the pR and pL promoters by CI (lysogeny) or by antitermination of late gene expression by Q (lysis). We found that expression of Q in trans from a plasmid at the time of infection resulted in a uniform lytic decision. Furthermore, expression of Q up to 50 min after infection results in lysis of the majority of cells which initially chose lysogenic development. In contrast, expression of Q in cells containing a single chromosomal prophage had no effect on cell growth, indicating commitment to lysogeny. Notably, if the prophage was present in 10 plasmid-borne copies, Q expression resulted in lytic development, suggesting that the cellular phage chromosome number is the critical determinant of the timing of lysogenic commitment. Based on our results, we conclude that (i) the lysogenic decision made by the CI-Cro switch soon after infection can be overruled by ectopic Q expression at least for a time equivalent to one phage life cycle, (ii) the presence of multiple λ chromosomes is a prerequisite for a successful Q-mediated switch from lysogenic to lytic development, and (iii) phage chromosomes within the same cell can reach different decisions.

摘要

发育过程中的一个关键事件是对特定细胞命运的不可逆承诺,这可能与初始细胞命运决定同时发生,也可能延迟。在这项工作中,我们使用典型的噬菌体λ裂解-溶原决定回路来研究承诺的时间。裂解-溶原决定是基于CII的表达轨迹做出的。所选择的发育策略通过CI对pR和pL启动子的抑制(溶原)或通过Q对晚期基因表达的抗终止(裂解)来体现。我们发现,感染时从质粒反式表达Q会导致统一的裂解决定。此外,感染后长达50分钟表达Q会导致大多数最初选择溶原发育的细胞裂解。相反,在含有单个染色体原噬菌体的细胞中表达Q对细胞生长没有影响,表明对溶原的承诺。值得注意的是,如果原噬菌体以10个质粒携带的拷贝存在,Q表达会导致裂解发育,这表明细胞噬菌体染色体数量是溶原承诺时间的关键决定因素。基于我们的结果,我们得出结论:(i)感染后不久由CI-Cro开关做出的溶原决定至少在相当于一个噬菌体生命周期的时间内可以被异位Q表达推翻;(ii)多个λ染色体的存在是成功进行Q介导的从溶原到裂解发育转变的先决条件;(iii)同一细胞内的噬菌体染色体可以做出不同的决定。

相似文献

2
Bacteriophage λ RexA and RexB functions assist the transition from lysogeny to lytic growth.
Mol Microbiol. 2021 Oct;116(4):1044-1063. doi: 10.1111/mmi.14792. Epub 2021 Aug 30.
3
The Developmental Switch in Bacteriophage λ: A Critical Role of the Cro Protein.
J Mol Biol. 2018 Jan 5;430(1):58-68. doi: 10.1016/j.jmb.2017.11.005. Epub 2017 Nov 20.
4
Instability of CII is needed for efficient switching between lytic and lysogenic development in bacteriophage 186.
Nucleic Acids Res. 2020 Dec 2;48(21):12030-12041. doi: 10.1093/nar/gkaa1065.
6
Lysis-lysogeny coexistence: prophage integration during lytic development.
Microbiologyopen. 2017 Feb;6(1). doi: 10.1002/mbo3.395. Epub 2016 Aug 17.
7
Yet another way that phage λ manipulates its Escherichia coli host: λrexB is involved in the lysogenic-lytic switch.
Mol Microbiol. 2015 May;96(4):689-93. doi: 10.1111/mmi.12969. Epub 2015 Mar 16.
8
Excess production of phage lambda delayed early proteins under conditions supporting high Escherichia coli growth rates.
Microbiology (Reading). 1998 Aug;144 ( Pt 8):2217-2224. doi: 10.1099/00221287-144-8-2217.
9
Switches in bacteriophage lambda development.
Annu Rev Genet. 2005;39:409-29. doi: 10.1146/annurev.genet.39.073003.113656.

引用本文的文献

1
From Bench to Keyboard and Back Again: A Brief History of Lambda Phage Modeling.
Annu Rev Biophys. 2021 May 6;50:117-134. doi: 10.1146/annurev-biophys-082020-063558.
2
Instability of CII is needed for efficient switching between lytic and lysogenic development in bacteriophage 186.
Nucleic Acids Res. 2020 Dec 2;48(21):12030-12041. doi: 10.1093/nar/gkaa1065.
3
High-resolution studies of lysis-lysogeny decision-making in bacteriophage lambda.
J Biol Chem. 2019 Mar 8;294(10):3343-3349. doi: 10.1074/jbc.TM118.003209. Epub 2018 Sep 21.
4
Bacteriophage Transcription Factor Cro Regulates Virulence Gene Expression in Enterohemorrhagic Escherichia coli.
Cell Host Microbe. 2018 May 9;23(5):607-617.e6. doi: 10.1016/j.chom.2018.04.007.
5
Late-Arriving Signals Contribute Less to Cell-Fate Decisions.
Biophys J. 2017 Nov 7;113(9):2110-2120. doi: 10.1016/j.bpj.2017.09.012.
6
Infection by bacteriophage lambda: an evolving paradigm for cellular individuality.
Curr Opin Microbiol. 2018 Jun;43:9-13. doi: 10.1016/j.mib.2017.09.014. Epub 2017 Nov 3.
7
Cell fate decisions emerge as phages cooperate or compete inside their host.
Nat Commun. 2017 Feb 6;8:14341. doi: 10.1038/ncomms14341.
8
The diverse genetic switch of enterobacterial and marine telomere phages.
Bacteriophage. 2016 Feb 18;6(2):e1148805. doi: 10.1080/21597081.2016.1148805. eCollection 2016 Apr-Jun.
10
How long can bacteriophage λ change its mind?
Bacteriophage. 2015 Jan 30;5(1):e1012930. doi: 10.1080/21597081.2015.1012930. eCollection 2015 Jan-Mar.

本文引用的文献

1
Reversible and noisy progression towards a commitment point enables adaptable and reliable cellular decision-making.
PLoS Comput Biol. 2011 Nov;7(11):e1002273. doi: 10.1371/journal.pcbi.1002273. Epub 2011 Nov 10.
2
Cumulative effect of prophage burden on Shiga toxin production in Escherichia coli.
Microbiology (Reading). 2012 Feb;158(Pt 2):488-497. doi: 10.1099/mic.0.054981-0. Epub 2011 Nov 17.
3
Decision making at a subcellular level determines the outcome of bacteriophage infection.
Cell. 2010 May 14;141(4):682-91. doi: 10.1016/j.cell.2010.03.034.
4
The scaffold protein Ste5 directly controls a switch-like mating decision in yeast.
Nature. 2010 May 6;465(7294):101-5. doi: 10.1038/nature08946. Epub 2010 Apr 18.
5
Potent transcriptional interference by pausing of RNA polymerases over a downstream promoter.
Mol Cell. 2009 Jun 12;34(5):545-55. doi: 10.1016/j.molcel.2009.04.018.
6
Epigenetic mechanisms in sequential differentiation of neural stem cells.
Epigenetics. 2009 Feb 16;4(2):89-92. doi: 10.4161/epi.4.2.8233. Epub 2009 Feb 18.
7
8
Switches in bacteriophage lambda development.
Annu Rev Genet. 2005;39:409-29. doi: 10.1146/annurev.genet.39.073003.113656.
9
Functional adaptation: the key to plasticity of cardiovascular "stem" cells?
Stem Cells Dev. 2005 Apr;14(2):111-21. doi: 10.1089/scd.2005.14.111.
10
Quantitative kinetic analysis of the bacteriophage lambda genetic network.
Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4470-5. doi: 10.1073/pnas.0500670102. Epub 2005 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验