Suppr超能文献

细胞命运的决定是噬菌体在宿主内合作或竞争的结果。

Cell fate decisions emerge as phages cooperate or compete inside their host.

机构信息

Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA.

Center for Phage Technology, Texas A&M University, College Station, Texas 77843, USA.

出版信息

Nat Commun. 2017 Feb 6;8:14341. doi: 10.1038/ncomms14341.

Abstract

The system of the bacterium Escherichia coli and its virus, bacteriophage lambda, is paradigmatic for gene regulation in cell-fate development, yet insight about its mechanisms and complexities are limited due to insufficient resolution of study. Here we develop a 4-colour fluorescence reporter system at the single-virus level, combined with computational models to unravel both the interactions between phages and how individual phages determine cellular fates. We find that phages cooperate during lysogenization, compete among each other during lysis, and that confusion between the two pathways occasionally occurs. Additionally, we observe that phage DNAs have fluctuating cellular arrival times and vie for resources to replicate, enabling the interplay during different developmental paths, where each phage genome may make an individual decision. These varied strategies could separate the selection for replication-optimizing beneficial mutations during lysis from sequence diversification during lysogeny, allowing rapid adaptation of phage populations for various environments.

摘要

大肠杆菌及其病毒噬菌体 λ 的系统是细胞命运发育中基因调控的典范,然而由于研究分辨率不足,对其机制和复杂性的了解有限。在这里,我们在单个病毒水平上开发了一个 4 色荧光报告系统,结合计算模型来揭示噬菌体之间的相互作用以及单个噬菌体如何决定细胞命运。我们发现噬菌体在溶原化过程中相互协作,在裂解过程中相互竞争,并且两种途径之间偶尔会发生混淆。此外,我们观察到噬菌体 DNA 具有细胞到达时间的波动,并争夺资源进行复制,从而在不同的发育途径中进行相互作用,其中每个噬菌体基因组都可以做出单独的决定。这些不同的策略可以将裂解过程中复制优化有益突变的选择与溶原过程中的序列多样化区分开来,从而使噬菌体群体能够快速适应各种环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/348a/5303824/125dc02ac9f8/ncomms14341-f1.jpg

相似文献

1
Cell fate decisions emerge as phages cooperate or compete inside their host.
Nat Commun. 2017 Feb 6;8:14341. doi: 10.1038/ncomms14341.
3
Lysis-lysogeny coexistence: prophage integration during lytic development.
Microbiologyopen. 2017 Feb;6(1). doi: 10.1002/mbo3.395. Epub 2016 Aug 17.
4
Population Dynamics of Phage and Bacteria in Spatially Structured Habitats Using Phage λ and Escherichia coli.
J Bacteriol. 2016 May 27;198(12):1783-93. doi: 10.1128/JB.00965-15. Print 2016 Jun 15.
6
Lambda phage genetic switch as a system with critical behaviour.
J Theor Biol. 2017 Oct 27;431:32-38. doi: 10.1016/j.jtbi.2017.07.024. Epub 2017 Jul 25.
7
Phage λ--new insights into regulatory circuits.
Adv Virus Res. 2012;82:155-78. doi: 10.1016/B978-0-12-394621-8.00016-9.
8
Roles of and in Development of Bacteriophages λ and Φ24.
Viruses. 2018 Oct 11;10(10):553. doi: 10.3390/v10100553.
9
Regulation of bacteriophage lambda development by guanosine 5'-diphosphate-3'-diphosphate.
Virology. 1999 Sep 30;262(2):431-41. doi: 10.1006/viro.1999.9907.
10
Emerging heterogeneous compartments by viruses in single bacterial cells.
Nat Commun. 2020 Jul 30;11(1):3813. doi: 10.1038/s41467-020-17515-8.

引用本文的文献

1
Eco-evolutionary dynamics of temperate phages in periodic environments.
Virus Evol. 2025 Apr 29;11(1):veaf019. doi: 10.1093/ve/veaf019. eCollection 2025.
2
Phollow reveals in situ phage transmission dynamics in the zebrafish gut microbiome at single-virion resolution.
Nat Microbiol. 2025 May;10(5):1067-1083. doi: 10.1038/s41564-025-01981-1. Epub 2025 Apr 18.
4
Spatial propagation of temperate phages within and among biofilms.
Proc Natl Acad Sci U S A. 2025 Feb 11;122(6):e2417058122. doi: 10.1073/pnas.2417058122. Epub 2025 Feb 4.
6
Fine-tuned spatiotemporal dynamics of DNA replication during phage lambda infection.
J Virol. 2024 Nov 19;98(11):e0112824. doi: 10.1128/jvi.01128-24. Epub 2024 Oct 31.
7
Characterizing behavioural differentiation in gene regulatory networks with representation graphs.
NAR Genom Bioinform. 2024 Aug 9;6(3):lqae102. doi: 10.1093/nargab/lqae102. eCollection 2024 Sep.
8
Competitive advantages of T-even phage lysis inhibition in response to secondary infection.
PLoS Comput Biol. 2024 Jul 8;20(7):e1012242. doi: 10.1371/journal.pcbi.1012242. eCollection 2024 Jul.
9
Phollow: Visualizing Gut Bacteriophage Transmission within Microbial Communities and Living Animals.
bioRxiv. 2024 Jun 13:2024.06.12.598711. doi: 10.1101/2024.06.12.598711.
10
Lytic/Lysogenic Transition as a Life-History Switch.
Virus Evol. 2024 Apr 3;10(1):veae028. doi: 10.1093/ve/veae028. eCollection 2024.

本文引用的文献

1
The role of pseudolysogeny in bacteriophage-host interactions in a natural freshwater environment.
Microbiology (Reading). 1997 Jun;143(6):2065-2070. doi: 10.1099/00221287-143-6-2065.
2
Lysis-lysogeny coexistence: prophage integration during lytic development.
Microbiologyopen. 2017 Feb;6(1). doi: 10.1002/mbo3.395. Epub 2016 Aug 17.
3
Single-Cell Studies of Phage λ: Hidden Treasures Under Occam's Rug.
Annu Rev Virol. 2016 Sep 29;3(1):453-472. doi: 10.1146/annurev-virology-110615-042127. Epub 2016 Jul 22.
4
Stress-response balance drives the evolution of a network module and its host genome.
Mol Syst Biol. 2015 Aug 31;11(8):827. doi: 10.15252/msb.20156185.
5
Phage DNA dynamics in cells with different fates.
Biophys J. 2015 Apr 21;108(8):2048-60. doi: 10.1016/j.bpj.2015.03.027.
6
Yet another way that phage λ manipulates its Escherichia coli host: λrexB is involved in the lysogenic-lytic switch.
Mol Microbiol. 2015 May;96(4):689-93. doi: 10.1111/mmi.12969. Epub 2015 Mar 16.
8
Revisiting bistability in the lysis/lysogeny circuit of bacteriophage lambda.
PLoS One. 2014 Jun 25;9(6):e100876. doi: 10.1371/journal.pone.0100876. eCollection 2014.
9
Convergent evolution of hyperswarming leads to impaired biofilm formation in pathogenic bacteria.
Cell Rep. 2013 Aug 29;4(4):697-708. doi: 10.1016/j.celrep.2013.07.026. Epub 2013 Aug 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验