Centro per la Pericolosità Sismica, Istituto Nazionale di Geofisica e Vulcanologia, 00143 Rome, Italy; and
Southern California Earthquake Center, Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089
Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):11973-8. doi: 10.1073/pnas.1410183111. Epub 2014 Aug 5.
Probabilistic forecasting models describe the aleatory variability of natural systems as well as our epistemic uncertainty about how the systems work. Testing a model against observations exposes ontological errors in the representation of a system and its uncertainties. We clarify several conceptual issues regarding the testing of probabilistic forecasting models for ontological errors: the ambiguity of the aleatory/epistemic dichotomy, the quantification of uncertainties as degrees of belief, the interplay between Bayesian and frequentist methods, and the scientific pathway for capturing predictability. We show that testability of the ontological null hypothesis derives from an experimental concept, external to the model, that identifies collections of data, observed and not yet observed, that are judged to be exchangeable when conditioned on a set of explanatory variables. These conditional exchangeability judgments specify observations with well-defined frequencies. Any model predicting these behaviors can thus be tested for ontological error by frequentist methods; e.g., using P values. In the forecasting problem, prior predictive model checking, rather than posterior predictive checking, is desirable because it provides more severe tests. We illustrate experimental concepts using examples from probabilistic seismic hazard analysis. Severe testing of a model under an appropriate set of experimental concepts is the key to model validation, in which we seek to know whether a model replicates the data-generating process well enough to be sufficiently reliable for some useful purpose, such as long-term seismic forecasting. Pessimistic views of system predictability fail to recognize the power of this methodology in separating predictable behaviors from those that are not.
概率预测模型描述了自然系统的随机性变化,以及我们对系统如何工作的认识不确定性。通过将模型与观测结果进行对比,可以发现系统及其不确定性表示中的本体论错误。我们澄清了关于概率预测模型本体论错误测试的几个概念问题:机遇/认识二分法的模糊性、不确定性的置信度量化、贝叶斯和频率方法的相互作用,以及捕捉可预测性的科学途径。我们表明,本体论零假设的可测试性源于一种实验概念,该概念是模型之外的,它确定了一组数据,这些数据已经被观测到,也可能尚未被观测到,当对一组解释变量进行条件化时,这些数据被认为是可交换的。这些条件可交换性判断指定了具有明确定义频率的观测值。因此,任何预测这些行为的模型都可以通过频率方法进行本体论错误测试;例如,使用 P 值。在预测问题中,先验预测模型检查而不是后验预测检查是可取的,因为它提供了更严格的测试。我们使用概率地震危险性分析中的示例来说明实验概念。在适当的实验概念集下对模型进行严格测试是模型验证的关键,我们旨在了解模型是否足够复制数据生成过程,以便在某些有用的目的(例如长期地震预测)中具有足够的可靠性。对系统可预测性的悲观观点未能认识到这种方法在区分可预测行为和不可预测行为方面的强大功能。