Risk Anal. 2021 Sep;41(9):1499-1512. doi: 10.1111/risa.13663. Epub 2020 Dec 24.
Earthquakes, tsunamis, and landslides take a devastating toll on human lives, critical infrastructure, and ecosystems. Harnessing the predictive capacities of hazard models is key to transitioning from reactive approaches to disaster management toward building resilient societies, yet the knowledge that these models produce involves multiple uncertainties. The failure to properly account for these uncertainties has at times had important implications, from the flawed safety measures at the Fukushima power plant, to the reliance on short-term earthquake prediction models (reportedly at the expense of mitigation efforts) in modern China. This article provides an overview of methods for handling uncertainty in probabilistic seismic hazard assessment, tsunami hazard analysis, and debris flow modeling, considering best practices and areas for improvement. It covers sensitivity analysis, structured approaches to expert elicitation, methods for characterizing structural uncertainty (e.g., ensembles and logic trees), and the value of formal decision-analytic frameworks even in situations of deep uncertainty.
地震、海啸和山体滑坡给人类生命、关键基础设施和生态系统造成了巨大损失。利用灾害模型的预测能力是从灾害管理的被动方法向建设有弹性的社会转变的关键,但这些模型所产生的知识涉及到多种不确定性。未能正确考虑这些不确定性有时会产生重要影响,从福岛核电站有缺陷的安全措施,到现代中国依赖短期地震预测模型(据报道,这是以减轻努力为代价的)。本文概述了在概率地震危险性评估、海啸危险性分析和泥石流模型中处理不确定性的方法,考虑了最佳实践和改进领域。它涵盖了敏感性分析、专家 elicitation 的结构化方法、用于刻画结构不确定性的方法(例如,集合和逻辑树),以及即使在深度不确定性情况下正式决策分析框架的价值。