Suppr超能文献

无规则肌动球蛋白束产生收缩力的决定因素。

Determinants of contractile forces generated in disorganized actomyosin bundles.

机构信息

Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive, West Lafayette, IN, 47907-2032, USA,

出版信息

Biomech Model Mechanobiol. 2015 Apr;14(2):345-55. doi: 10.1007/s10237-014-0608-2. Epub 2014 Aug 8.

Abstract

Actomyosin machinery is a fundamental engine consisting mostly of actin filaments, molecular motors, and passive cross-linkers, generating mechanical forces required for biological processes of non-muscle cells such as cell migration, cytokinesis, and morphogenesis. Although the molecular and physical properties of key elements in the actomyosin machinery have been characterized well, it still remains unclear how macroscopic force buildup and dissipation in actomyosin networks and bundles depend on the microscopic properties of individual cytoskeletal components and their local interactions. To bridge such a gap between macroscopic and microscopic scales, we have developed a three-dimensional computational model of actomyosin bundles clamped to an elastic substrate with minimal components: actin filaments, passive cross-linkers, and active motors. Our model accounts for several key features neglected by previous studies despite their significance for force generation, such as realistic structure and kinetics of the motors. Using the model, we systematically investigated how net tension in actomyosin bundles is governed via interplay between motors and cross-linkers. We demonstrated motors can generate large tension on a bundle in the absence of cross-linkers in a very inefficient, unstable manner. Cross-linkers help motors to generate their maximum potential forces as well as enhance overall connectivity, leading to much higher efficiency and stability. We showed further that the cross-linkers behave as a molecular clutch with tunable friction which has quite distinct effects on net tension depending on their cross-linking angles. We also examined the source of symmetry breaking between tensile and compressive forces during tension generation process and discussed how the length and dynamics of actin filaments and the stiffness of the elastic substrate can affect the generated tension.

摘要

肌动球蛋白机械装置是一种基本的引擎,主要由肌动蛋白丝、分子马达和被动交联剂组成,为非肌肉细胞的生物过程(如细胞迁移、胞质分裂和形态发生)产生所需的机械力。尽管肌动球蛋白机械装置中的关键元素的分子和物理性质已经得到很好的描述,但仍然不清楚肌动球蛋白网络和束中的宏观力的积累和耗散如何取决于细胞骨架成分的微观性质及其局部相互作用。为了弥合宏观和微观尺度之间的差距,我们开发了一个用最少的组件(肌动蛋白丝、被动交联剂和活性马达)夹在弹性基底上的肌动球蛋白束的三维计算模型。我们的模型考虑了几个关键特征,尽管它们对力的产生很重要,但以前的研究却忽略了这些特征,例如马达的实际结构和动力学。使用该模型,我们系统地研究了肌动球蛋白束中的净张力如何通过马达和交联剂之间的相互作用来控制。我们证明,在没有交联剂的情况下,马达可以以非常低效和不稳定的方式在束上产生很大的张力。交联剂有助于马达发挥其最大的潜在力,并增强整体连通性,从而提高效率和稳定性。我们进一步表明,交联剂作为一种具有可调摩擦力的分子离合器,对净张力具有截然不同的影响,这取决于它们的交联角度。我们还研究了在张力产生过程中拉力和压力之间对称性破坏的来源,并讨论了 actin 丝的长度和动力学以及弹性基底的刚度如何影响产生的张力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验