School of Mathematics and Physics, The University of Queensland, St Lucia, Australia.
Courant Institute of Mathematical Sciences, New York University, New York, New York.
Biophys J. 2021 Sep 21;120(18):4029-4040. doi: 10.1016/j.bpj.2021.08.012. Epub 2021 Aug 12.
We use mathematical modeling and computation to investigate how protein friction facilitates contraction of disordered actomyosin networks. We simulate two-dimensional networks using an agent-based model, consisting of a system of force-balance equations for myosin motor proteins and semiflexible actin filaments. A major advantage of our approach is that it enables direct calculation of the network stress tensor, which provides a quantitative measure of contractility. Exploiting this, we use repeated simulations of disordered networks to confirm that both protein friction and actin filament bending are required for contraction. We then use simulations of elementary two-filament systems to show that filament bending flexibility can facilitate contraction on the microscopic scale. Finally, we show that actin filament turnover is necessary to sustain contraction and prevent filament aggregation. Simulations with and without turnover also exhibit contractile pulses. However, these pulses are aperiodic, suggesting that periodic pulsation can only arise because of additional regulatory mechanisms or more complex mechanical behavior.
我们使用数学建模和计算来研究蛋白质摩擦力如何促进无序肌动球蛋白网络的收缩。我们使用基于代理的模型模拟二维网络,该模型由肌球蛋白马达蛋白和半柔性肌动蛋白丝的力平衡方程组组成。我们方法的一个主要优势是它能够直接计算网络应力张量,这为收缩性提供了定量度量。利用这一点,我们使用无序网络的重复模拟来确认蛋白质摩擦力和肌动蛋白丝弯曲对于收缩都是必需的。然后,我们使用基本的双丝系统的模拟来表明丝弯曲的灵活性可以在微观尺度上促进收缩。最后,我们表明肌动蛋白丝周转率对于维持收缩和防止丝聚集是必要的。有和没有周转率的模拟都表现出收缩脉冲。然而,这些脉冲是无规则的,这表明周期性脉冲只能由于额外的调节机制或更复杂的机械行为而产生。