Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France.
Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
Cell Rep. 2022 May 31;39(9):110868. doi: 10.1016/j.celrep.2022.110868.
Actin network architecture and dynamics play a central role in cell contractility and tissue morphogenesis. RhoA-driven pulsed contractions are a generic mode of actomyosin contractility, but the mechanisms underlying how their specific architecture emerges and how this architecture supports the contractile function of the network remain unclear. Here we show that, during pulsed contractions, the actin network is assembled by two subpopulations of formins: a functionally inactive population (recruited) and formins actively participating in actin filament elongation (elongating). We then show that elongating formins assemble a polar actin network, with barbed ends pointing out of the pulse. Numerical simulations demonstrate that this geometry favors rapid network contraction. Our results show that formins convert a local RhoA activity gradient into a polar network architecture, causing efficient network contractility, underlying the key function of kinetic controls in the assembly and mechanics of cortical network architectures.
肌动蛋白网络的结构和动态在细胞收缩和组织形态发生中起着核心作用。RhoA 驱动的脉冲收缩是肌球蛋白收缩的一种通用模式,但它们特定结构如何出现以及这种结构如何支持网络的收缩功能仍不清楚。在这里,我们表明,在脉冲收缩期间,肌动蛋白网络由两种成核蛋白亚群组装而成:一种功能上不活跃的群体(募集)和成核蛋白积极参与肌动蛋白丝伸长(伸长)。然后我们表明,伸长的成核蛋白组装了一个极性肌动蛋白网络,其尖端指向脉冲之外。数值模拟表明,这种几何形状有利于网络的快速收缩。我们的结果表明,成核蛋白将局部 RhoA 活性梯度转化为极性网络结构,从而导致有效的网络收缩,这是动力学控制在皮质网络结构的组装和力学中的关键作用的基础。