Suppr超能文献

广义系统-热库主方程中的重整化记忆核

Resummed memory kernels in generalized system-bath master equations.

作者信息

Mavros Michael G, Van Voorhis Troy

机构信息

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA.

出版信息

J Chem Phys. 2014 Aug 7;141(5):054112. doi: 10.1063/1.4891669.

Abstract

Generalized master equations provide a concise formalism for studying reduced population dynamics. Usually, these master equations require a perturbative expansion of the memory kernels governing the dynamics; in order to prevent divergences, these expansions must be resummed. Resummation techniques of perturbation series are ubiquitous in physics, but they have not been readily studied for the time-dependent memory kernels used in generalized master equations. In this paper, we present a comparison of different resummation techniques for such memory kernels up to fourth order. We study specifically the spin-boson Hamiltonian as a model system bath Hamiltonian, treating the diabatic coupling between the two states as a perturbation. A novel derivation of the fourth-order memory kernel for the spin-boson problem is presented; then, the second- and fourth-order kernels are evaluated numerically for a variety of spin-boson parameter regimes. We find that resumming the kernels through fourth order using a Padé approximant results in divergent populations in the strong electronic coupling regime due to a singularity introduced by the nature of the resummation, and thus recommend a non-divergent exponential resummation (the "Landau-Zener resummation" of previous work). The inclusion of fourth-order effects in a Landau-Zener-resummed kernel is shown to improve both the dephasing rate and the obedience of detailed balance over simpler prescriptions like the non-interacting blip approximation, showing a relatively quick convergence on the exact answer. The results suggest that including higher-order contributions to the memory kernel of a generalized master equation and performing an appropriate resummation can provide a numerically-exact solution to system-bath dynamics for a general spectral density, opening the way to a new class of methods for treating system-bath dynamics.

摘要

广义主方程为研究约化布居动力学提供了一种简洁的形式体系。通常,这些主方程需要对支配动力学的记忆核进行微扰展开;为了防止发散,必须对这些展开式进行重整。微扰级数的重整技术在物理学中无处不在,但对于广义主方程中使用的含时记忆核,尚未得到充分研究。在本文中我们比较了此类记忆核直至四阶的不同重整技术。我们具体研究了自旋 - 玻色子哈密顿量作为模型系统的浴哈密顿量,将两个态之间的绝热耦合视为微扰。给出了自旋 - 玻色子问题四阶记忆核的一种新颖推导;然后,针对各种自旋 - 玻色子参数区域对二阶和四阶核进行了数值评估。我们发现,由于重整性质引入的奇点,在强电子耦合区域使用帕德近似对核进行四阶重整会导致布居发散,因此推荐一种无发散的指数重整(先前工作中的“朗道 - 齐纳重整”)。结果表明,在朗道 - 齐纳重整核中包含四阶效应,与诸如非相互作用脉冲近似等更简单的方法相比,既能提高退相速率又能改善细致平衡的服从性,显示出相对较快地收敛到精确答案。这些结果表明,对广义主方程的记忆核包含高阶贡献并进行适当的重整,可以为一般谱密度的系统 - 浴动力学提供数值精确解,为处理系统 - 浴动力学的一类新方法开辟了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验