Suppr超能文献

准绝热传播子路径积分的粗粒化表示,用于处理非马尔可夫长时间浴记忆。

Coarse-grained representation of the quasi adiabatic propagator path integral for the treatment of non-Markovian long-time bath memory.

机构信息

Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany.

出版信息

J Chem Phys. 2017 Jun 7;146(21):214101. doi: 10.1063/1.4984075.

Abstract

The description of non-Markovian effects imposed by low frequency bath modes poses a persistent challenge for path integral based approaches like the iterative quasi-adiabatic propagator path integral (iQUAPI) method. We present a novel approximate method, termed mask assisted coarse graining of influence coefficients (MACGIC)-iQUAPI, that offers appealing computational savings due to substantial reduction of considered path segments for propagation. The method relies on an efficient path segment merging procedure via an intermediate coarse grained representation of Feynman-Vernon influence coefficients that exploits physical properties of system decoherence. The MACGIC-iQUAPI method allows us to access the regime of biological significant long-time bath memory on the order of hundred propagation time steps while retaining convergence to iQUAPI results. Numerical performance is demonstrated for a set of benchmark problems that cover bath assisted long range electron transfer, the transition from coherent to incoherent dynamics in a prototypical molecular dimer and excitation energy transfer in a 24-state model of the Fenna-Matthews-Olson trimer complex where in all cases excellent agreement with numerically exact reference data is obtained.

摘要

低频浴模施加的非马尔可夫效应的描述对基于路径积分的方法(如迭代拟绝热传播子路径积分(iQUAPI)方法)提出了持续的挑战。我们提出了一种新颖的近似方法,称为掩蔽辅助影响系数粗粒化(MACGIC)-iQUAPI,由于传播过程中考虑的路径段数量大大减少,因此提供了有吸引力的计算节省。该方法依赖于通过费曼-维纳影响系数的中间粗粒化表示进行有效的路径段合并过程,该过程利用了系统退相干的物理性质。MACGIC-iQUAPI 方法允许我们在保持与 iQUAPI 结果收敛的情况下,访问生物意义上的长时间浴记忆的范围,该范围的数量级为数百个传播时间步。我们对一组基准问题进行了数值性能演示,这些问题涵盖了浴辅助的长程电子转移、原型分子二聚体中从相干到非相干动力学的转变以及 Fenna-Matthews-Olson 三聚体复合物的 24 态模型中的激发能量转移,在所有情况下都与数值精确的参考数据获得了极好的一致性。

相似文献

6
Quantification of non-Markovian effects in the Fenna-Matthews-Olson complex.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Dec;88(6):062719. doi: 10.1103/PhysRevE.88.062719. Epub 2013 Dec 19.
7
Iterative blip-summed path integral for quantum dynamics in strongly dissipative environments.
J Chem Phys. 2017 Apr 7;146(13):134101. doi: 10.1063/1.4979197.
8
Real-Time Path Integral Methods, Quantum Master Equations, and Classical vs Quantum Memory.
J Phys Chem B. 2019 Dec 12;123(49):10470-10482. doi: 10.1021/acs.jpcb.9b08429. Epub 2019 Dec 2.
9
Adiabatic eigenfunction-based approach for coherent excitation transfer: an almost analytical treatment of the Fenna-Matthews-Olson complex.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):062712. doi: 10.1103/PhysRevE.87.062712. Epub 2013 Jun 24.
10
Perturbation expansions of stochastic wavefunctions for open quantum systems.
J Chem Phys. 2017 Nov 14;147(18):184103. doi: 10.1063/1.4996737.

引用本文的文献

1
Excited State Branching Processes in a Ru(II)-Based Donor-Acceptor-Donor System.
Chemistry. 2025 Jun 3;31(31):e202404671. doi: 10.1002/chem.202404671. Epub 2025 May 3.
2
Tailored Charge Transfer Kinetics in Precursors for Organic Radical Batteries: A Joint Synthetic-Theoretical Approach.
ChemSusChem. 2023 Jan 20;16(2):e202201679. doi: 10.1002/cssc.202201679. Epub 2022 Nov 30.
4
Artificial Photosynthesis: Is Computation Ready for the Challenge Ahead?
Nanomaterials (Basel). 2021 Jan 24;11(2):299. doi: 10.3390/nano11020299.
5
Regulatory Impact of the C-Terminal Tail on Charge Transfer Pathways in Cryptochrome.
Molecules. 2020 Oct 19;25(20):4810. doi: 10.3390/molecules25204810.
6
Ultrafast Spectroscopy of Photoactive Molecular Systems from First Principles: Where We Stand Today and Where We Are Going.
J Am Chem Soc. 2020 Sep 23;142(38):16117-16139. doi: 10.1021/jacs.0c04952. Epub 2020 Sep 13.
7
Simple Quantum Dynamics with Thermalization.
J Phys Chem A. 2018 Jan 11;122(1):172-183. doi: 10.1021/acs.jpca.7b10380. Epub 2017 Dec 20.

本文引用的文献

1
Modeling of Transient Absorption Spectra in Exciton-Charge-Transfer Systems.
J Phys Chem B. 2017 Jan 26;121(3):463-470. doi: 10.1021/acs.jpcb.6b09858. Epub 2017 Jan 11.
2
Quantum effects in ultrafast electron transfers within cryptochromes.
Phys Chem Chem Phys. 2016 Aug 21;18(31):21442-57. doi: 10.1039/c6cp02809h. Epub 2016 Jul 18.
3
Challenges facing an understanding of the nature of low-energy excited states in photosynthesis.
Biochim Biophys Acta. 2016 Sep;1857(9):1627-1640. doi: 10.1016/j.bbabio.2016.06.010. Epub 2016 Jun 29.
4
In situ mapping of the energy flow through the entire photosynthetic apparatus.
Nat Chem. 2016 Jul;8(7):705-10. doi: 10.1038/nchem.2525. Epub 2016 May 30.
5
Quantum Coherence in Photosynthesis for Efficient Solar Energy Conversion.
Nat Phys. 2014 Sep 1;10(9):676-682. doi: 10.1038/nphys3017.
6
Quantum-Classical Path Integral Simulation of Ferrocene-Ferrocenium Charge Transfer in Liquid Hexane.
J Phys Chem Lett. 2015 Dec 17;6(24):4959-65. doi: 10.1021/acs.jpclett.5b02265. Epub 2015 Dec 3.
7
High-Performance Solution of Hierarchical Equations of Motion for Studying Energy Transfer in Light-Harvesting Complexes.
J Chem Theory Comput. 2011 Jul 12;7(7):2166-74. doi: 10.1021/ct200126d. Epub 2011 Jun 9.
9
Why Quantum Coherence Is Not Important in the Fenna-Matthews-Olsen Complex.
J Chem Theory Comput. 2015 Jul 14;11(7):3411-9. doi: 10.1021/ct501066k.
10
The Eighth Bacteriochlorophyll Completes the Excitation Energy Funnel in the FMO Protein.
J Phys Chem Lett. 2011 Jan 20;2(2):93-8. doi: 10.1021/jz101541b. Epub 2010 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验