Suppr超能文献

利用脑磁图中的结构连接性指导功能连接性估计:在轻度认知障碍状态判别中的应用

Guiding functional connectivity estimation by structural connectivity in MEG: an application to discrimination of conditions of mild cognitive impairment.

作者信息

Pineda-Pardo José Angel, Bruña Ricardo, Woolrich Mark, Marcos Alberto, Nobre Anna C, Maestú Fernando, Vidaurre Diego

机构信息

Laboratory of Neuroimaging, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain; Laboratory of Cognitive and Computational Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain.

Laboratory of Cognitive and Computational Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain.

出版信息

Neuroimage. 2014 Nov 1;101:765-77. doi: 10.1016/j.neuroimage.2014.08.002. Epub 2014 Aug 8.

Abstract

Whole brain resting state connectivity is a promising biomarker that might help to obtain an early diagnosis in many neurological diseases, such as dementia. Inferring resting-state connectivity is often based on correlations, which are sensitive to indirect connections, leading to an inaccurate representation of the real backbone of the network. The precision matrix is a better representation for whole brain connectivity, as it considers only direct connections. The network structure can be estimated using the graphical lasso (GL), which achieves sparsity through l1-regularization on the precision matrix. In this paper, we propose a structural connectivity adaptive version of the GL, where weaker anatomical connections are represented as stronger penalties on the corresponding functional connections. We applied beamformer source reconstruction to the resting state MEG recordings of 81 subjects, where 29 were healthy controls, 22 were single-domain amnestic Mild Cognitive Impaired (MCI), and 30 were multiple-domain amnestic MCI. An atlas-based anatomical parcellation of 66 regions was obtained for each subject, and time series were assigned to each of the regions. The fiber densities between the regions, obtained with deterministic tractography from diffusion-weighted MRI, were used to define the anatomical connectivity. Precision matrices were obtained with the region specific time series in five different frequency bands. We compared our method with the traditional GL and a functional adaptive version of the GL, in terms of log-likelihood and classification accuracies between the three groups. We conclude that introducing an anatomical prior improves the expressivity of the model and, in most cases, leads to a better classification between groups.

摘要

全脑静息态连接性是一种很有前景的生物标志物,可能有助于在许多神经系统疾病(如痴呆症)中实现早期诊断。推断静息态连接性通常基于相关性,而相关性对间接连接敏感,导致对网络真正主干的表示不准确。精度矩阵是全脑连接性的更好表示,因为它只考虑直接连接。可以使用图形拉索(GL)估计网络结构,GL通过对精度矩阵进行L1正则化实现稀疏性。在本文中,我们提出了GL的一种结构连接性自适应版本,其中较弱的解剖连接在相应的功能连接上表示为更强的惩罚。我们将波束形成器源重建应用于81名受试者的静息态脑磁图记录,其中29名是健康对照,22名是单领域遗忘型轻度认知障碍(MCI)患者,30名是多领域遗忘型MCI患者。为每个受试者获得了基于图谱的66个区域的解剖分割,并将时间序列分配到每个区域。通过扩散加权磁共振成像的确定性纤维束成像获得的区域间纤维密度用于定义解剖连接性。在五个不同频段使用区域特定的时间序列获得精度矩阵。我们在对数似然和三组之间的分类准确率方面,将我们的方法与传统GL和GL的功能自适应版本进行了比较。我们得出结论,引入解剖学先验提高了模型的表现力,并且在大多数情况下,导致组间更好的分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ed9/4312351/f3fd4708759d/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验