Suppr超能文献

多模态生物标志物数据的整合网络学习

INTEGRATIVE NETWORK LEARNING FOR MULTI-MODALITY BIOMARKER DATA.

作者信息

Xie Shanghong, Zeng Donglin, Wang Yuanjia

机构信息

Department of Biostatistics, Mailman School of Public Health, Columbia University.

Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill.

出版信息

Ann Appl Stat. 2021 Mar;15(1):64-87. doi: 10.1214/20-aoas1382. Epub 2021 Mar 18.

Abstract

The biomarker networks measured by different modalities of data (e.g., structural magnetic resonance imaging (sMRI), diffusion tensor imaging (DTI)) may share the same true underlying biological model. In this work, we propose a node-wise biomarker graphical model to leverage the shared mechanism between multi-modality data to provide a more reliable estimation of the target modality network and account for the heterogeneity in networks due to differences between subjects and networks of external modality. Latent variables are introduced to represent the shared unobserved biological network and the information from the external modality is incorporated to model the distribution of the underlying biological network. We propose an efficient approximation to the posterior expectation of the latent variables that reduces computational cost by at least 50%. The performance of the proposed method is demonstrated by extensive simulation studies and an application to construct gray matter brain atrophy network of Huntington's disease by using sMRI data and DTI data. The identified network connections are more consistent with clinical literature and better improve prediction in follow-up clinical outcomes and separate subjects into clinically meaningful subgroups with different prognosis than alternative methods.

摘要

通过不同数据模态(如结构磁共振成像(sMRI)、扩散张量成像(DTI))测量的生物标志物网络可能共享相同的真实潜在生物学模型。在这项工作中,我们提出了一种逐节点生物标志物图形模型,以利用多模态数据之间的共享机制,为目标模态网络提供更可靠的估计,并解释由于个体差异和外部模态网络差异导致的网络异质性。引入潜在变量来表示共享的未观察到的生物网络,并纳入来自外部模态的信息以对潜在生物网络的分布进行建模。我们提出了一种对潜在变量后验期望的有效近似方法,可将计算成本降低至少50%。通过广泛的模拟研究以及使用sMRI数据和DTI数据构建亨廷顿舞蹈病灰质脑萎缩网络的应用,证明了所提出方法的性能。与替代方法相比,所识别出的网络连接与临床文献更一致,能更好地改善对后续临床结果的预测,并将个体分为具有不同预后的临床意义亚组。

相似文献

1
INTEGRATIVE NETWORK LEARNING FOR MULTI-MODALITY BIOMARKER DATA.多模态生物标志物数据的整合网络学习
Ann Appl Stat. 2021 Mar;15(1):64-87. doi: 10.1214/20-aoas1382. Epub 2021 Mar 18.

本文引用的文献

2
A tutorial on regularized partial correlation networks.正则化偏相关网络教程。
Psychol Methods. 2018 Dec;23(4):617-634. doi: 10.1037/met0000167. Epub 2018 Mar 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验