源空间连接组学与神经退行性变:一测了之并不适用所有情况。

Source space connectomics of neurodegeneration: One-metric approach does not fit all.

机构信息

Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile.

Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina.

出版信息

Neurobiol Dis. 2023 Apr;179:106047. doi: 10.1016/j.nbd.2023.106047. Epub 2023 Feb 23.

Abstract

Brain functional connectivity in dementia has been assessed with dissimilar EEG connectivity metrics and estimation procedures, thereby increasing results' heterogeneity. In this scenario, joint analyses integrating information from different metrics may allow for a more comprehensive characterization of brain functional interactions in different dementia subtypes. To test this hypothesis, resting-state electroencephalogram (rsEEG) was recorded in individuals with Alzheimer's Disease (AD), behavioral variant frontotemporal dementia (bvFTD), and healthy controls (HCs). Whole-brain functional connectivity was estimated in the EEG source space using 101 different types of functional connectivity, capturing linear and nonlinear interactions in both time and frequency-domains. Multivariate machine learning and progressive feature elimination was run to discriminate AD from HCs, and bvFTD from HCs, based on joint analyses of i) EEG frequency bands, ii) complementary frequency-domain metrics (e.g., instantaneous, lagged, and total connectivity), and iii) time-domain metrics with different linearity assumption (e.g., Pearson correlation coefficient and mutual information). <10% of all possible connections were responsible for the differences between patients and controls, and atypical connectivity was never captured by >1/4 of all possible connectivity measures. Joint analyses revealed patterns of hypoconnectivity (patients<HCs) involving convergent temporo-parieto-occipital regions in AD, and fronto-temporo-parietal areas in bvFTD. Hyperconnectivity (patients>HCs) in both groups was mainly identified in frontotemporal regions. These atypicalities were differently captured by frequency- and time-domain connectivity metrics, in a bandwidth-specific fashion. The multi-metric representation of source space whole-brain functional connectivity evidenced the inadequacy of single-metric approaches, and resulted in a valid alternative for the selection problem in EEG connectivity. These joint analyses reveal patterns of brain functional interdependence that are overlooked with single metrics approaches, contributing to a more reliable and interpretable description of atypical functional connectivity in neurodegeneration.

摘要

在痴呆症中,脑功能连接已通过不同的 EEG 连接性指标和估计程序进行了评估,从而增加了结果的异质性。在这种情况下,联合分析整合来自不同指标的信息可能允许对不同痴呆亚型的脑功能相互作用进行更全面的描述。为了验证这一假设,对阿尔茨海默病(AD)、行为变异额颞叶痴呆(bvFTD)和健康对照(HCs)个体进行了静息态脑电图(rsEEG)记录。在 EEG 源空间中使用 101 种不同类型的功能连接性来估计全脑功能连接性,在时间和频率域中捕获线性和非线性相互作用。基于 EEG 频带的联合分析,使用多变量机器学习和逐步特征消除来区分 AD 与 HCs,bvFTD 与 HCs,以及基于 i)EEG 频带,ii)互补频域指标(例如,瞬时、滞后和总连接性)和 iii)具有不同线性假设的时域指标(例如,皮尔逊相关系数和互信息)的联合分析。只有 <10%的所有可能连接负责患者和对照组之间的差异,并且非典型连接性从未被 >1/4 的所有可能连接测量捕获。联合分析揭示了 AD 中涉及会聚性颞顶枕区和 bvFTD 中额颞顶枕区的连接不足模式。两组患者的过度连接(患者>HCs)主要在前额颞叶区域中识别。这些异常在频域和时域连接性指标中以特定带宽的方式被不同地捕获。源空间全脑功能连接的多指标表示证明了单指标方法的不足,并为 EEG 连接性的选择问题提供了有效的替代方法。这些联合分析揭示了大脑功能相互依存的模式,这些模式被单指标方法所忽略,有助于更可靠和可解释的描述神经退行性变中的非典型功能连接。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30fe/11170467/c840c3da7e2d/nihms-1996711-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索