Richardson Joseph J, Teng Darwin, Björnmalm Mattias, Gunawan Sylvia T, Guo Junling, Cui Jiwei, Franks George V, Caruso Frank
Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia.
Langmuir. 2014 Aug 26;30(33):10028-34. doi: 10.1021/la502176g. Epub 2014 Aug 12.
Polymer microcapsules can be used as bioreactors and artificial cells; however, preparation methods for cell-like microcapsules are typically time-consuming, low yielding, and/or involve custom microfluidics. Here, we introduce a rapid (∼30 min per batch, eight layers), scalable (up to 500 mg of templates), and efficient (98% yield) microcapsule preparation technique utilizing a fluidized bed for the layer-by-layer (LbL) assembly of polymers, and we investigate the parameters that govern the formation of robust capsules. Fluidization in water was possible for particles of comparable diameter to mammalian cells (>5 μm), with the experimental flow rates necessary for fluidization matching well with the theoretical values. Important variables for polymer film deposition and capsule formation were the concentration of polymer solution and the molecular weight of the polymer, while the volume of the polymer solution had a negligible impact. In combination, increasing the polymer molecular weight and polymer solution concentration resulted in improved film deposition and the formation of robust microcapsules. The resultant polymer microcapsules had a thickness of ∼5.5 nm per bilayer, which is in close agreement with conventionally prepared (quiescent (nonflow) adsorption/centrifugation/wash) LbL capsules. The technique reported herein provides a new way to rapidly generate microcapsules (approximately 8 times quicker than the conventional means), while being also amenable to scale-up and mass production.
聚合物微胶囊可作为生物反应器和人工细胞;然而,制备类细胞微胶囊的方法通常耗时、产量低且/或涉及定制微流控技术。在此,我们介绍一种快速(每批约30分钟,八层)、可扩展(高达500毫克模板)且高效(产率98%)的微胶囊制备技术,该技术利用流化床进行聚合物的逐层(LbL)组装,并且我们研究了控制坚固胶囊形成的参数。对于直径与哺乳动物细胞相当(>5μm)的颗粒,在水中可以实现流化,流化所需的实验流速与理论值匹配良好。聚合物膜沉积和胶囊形成的重要变量是聚合物溶液的浓度和聚合物的分子量,而聚合物溶液的体积影响可忽略不计。综合起来,增加聚合物分子量和聚合物溶液浓度会导致更好的膜沉积和坚固微胶囊的形成。所得聚合物微胶囊每双层的厚度约为5.5纳米,这与传统制备的(静态(非流动)吸附/离心/洗涤)LbL胶囊非常一致。本文报道的技术提供了一种快速生成微胶囊的新方法(比传统方法快约8倍),同时也适合扩大规模和大规模生产。