Tong Cheuk Ka, Han Young-Goo, Shah Jugal K, Obernier Kirsten, Guinto Cristina D, Alvarez-Buylla Arturo
Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143; Neuroscience Graduate Program, University of California, San Francisco, CA 94158; and.
Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105.
Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12438-43. doi: 10.1073/pnas.1321425111. Epub 2014 Aug 11.
The apical domain of embryonic (radial glia) and adult (B1 cells) neural stem cells (NSCs) contains a primary cilium. This organelle has been suggested to function as an antenna for the detection of morphogens or growth factors. In particular, primary cilia are essential for Hedgehog (Hh) signaling, which plays key roles in brain development. Their unique location facing the ventricular lumen suggests that primary cilia in NSCs could play an important role in reception of signals within the cerebrospinal fluid. Surprisingly, ablation of primary cilia using conditional alleles for genes essential for intraflagellar transport [kinesin family member 3A (Kif3a) and intraflagellar transport 88 (Ift88)] and Cre drivers that are activated at early [Nestin; embryonic day 10.5 (E10.5)] and late [human glial fibrillary acidic protein (hGFAP); E13.5] stages of mouse neural development resulted in no apparent developmental defects. Neurogenesis in the ventricular-subventricular zone (V-SVZ) shortly after birth was also largely unaffected, except for a restricted ventral domain previously known to be regulated by Hh signaling. However, Kif3a and Ift88 genetic ablation also disrupts ependymal cilia, resulting in hydrocephalus by postnatal day 4. To directly study the role of B1 cells' primary cilia without the confounding effects of hydrocephalus, we stereotaxically targeted elimination of Kif3a from a subpopulation of radial glia, which resulted in ablation of primary cilia in a subset of B1 cells. Again, this experiment resulted in decreased neurogenesis only in the ventral V-SVZ. Primary cilia ablation led to disruption of Hh signaling in this subdomain. We conclude that primary cilia are required in a specific Hh-regulated subregion of the postnatal V-SVZ.
胚胎期(放射状胶质细胞)和成体期(B1细胞)神经干细胞(NSCs)的顶端区域含有一根初级纤毛。有人认为这种细胞器起着检测形态发生素或生长因子的天线作用。特别是,初级纤毛对于在脑发育中起关键作用的刺猬信号通路(Hh)至关重要。它们面对脑室腔的独特位置表明,神经干细胞中的初级纤毛可能在脑脊液内信号接收中发挥重要作用。令人惊讶的是,利用鞭毛内运输所需基因的条件性等位基因[驱动蛋白家族成员3A(Kif3a)和鞭毛内运输88(Ift88)]以及在小鼠神经发育早期[巢蛋白;胚胎第10.5天(E10.5)]和晚期[人胶质纤维酸性蛋白(hGFAP);E13.5]被激活的Cre驱动蛋白来消融初级纤毛,并未导致明显的发育缺陷。出生后不久,脑室下区(V-SVZ)的神经发生也基本未受影响,除了一个先前已知受Hh信号通路调控的受限腹侧区域。然而,Kif3a和Ift88基因消融也会破坏室管膜纤毛,导致出生后第4天出现脑积水。为了在没有脑积水干扰效应的情况下直接研究B1细胞初级纤毛的作用,我们通过立体定位从放射状胶质细胞亚群中靶向消除Kif3a,这导致了一部分B1细胞中的初级纤毛被消融。同样,该实验仅导致腹侧V-SVZ的神经发生减少。初级纤毛消融导致该亚区域的Hh信号通路中断。我们得出结论,出生后V-SVZ中特定的Hh调控亚区域需要初级纤毛。