Suppr超能文献

亲铁元素对月球起源的限制

Siderophile element constraints on the origin of the Moon.

作者信息

Walker Richard J

机构信息

Isotope Geochemistry Laboratory, Department of Geology, University of Maryland, College Park, MD 20742, USA

出版信息

Philos Trans A Math Phys Eng Sci. 2014 Sep 13;372(2024):20130258. doi: 10.1098/rsta.2013.0258.

Abstract

Discovery of small enrichments in (182)W/(184)W in some Archaean rocks, relative to modern mantle, suggests both exogeneous and endogenous modifications to highly siderophile element (HSE) and moderately siderophile element abundances in the terrestrial mantle. Collectively, these isotopic enrichments suggest the formation of chemically fractionated reservoirs in the terrestrial mantle that survived the putative Moon-forming giant impact, and also provide support for the late accretion hypothesis. The lunar mantle sources of volcanic glasses and basalts were depleted in HSEs relative to the terrestrial mantle by at least a factor of 20. The most likely explanations for the disparity between the Earth and Moon are either that the Moon received a disproportionately lower share of late accreted materials than the Earth, such as may have resulted from stochastic late accretion, or the major phase of late accretion occurred prior to the Moon-forming event, and the putative giant impact led to little drawdown of HSEs to the Earth's core. High precision determination of the (182)W isotopic composition of the Moon can help to resolve this issue.

摘要

相对于现代地幔,在一些太古代岩石中发现的(182)W/(184)W的小幅度富集,表明地球地幔中高度亲铁元素(HSE)和中度亲铁元素丰度存在外源和内源的改变。总体而言,这些同位素富集表明在地球地幔中形成了化学分馏储库,这些储库在假定的月球形成巨型撞击中幸存下来,同时也为晚期吸积假说提供了支持。相对于地球地幔,火山玻璃和玄武岩的月球地幔源中的HSEs至少贫化了20倍。地球和月球之间差异的最可能解释是,要么月球比地球获得的晚期吸积物质份额不成比例地低,例如可能是随机晚期吸积导致的,要么晚期吸积的主要阶段发生在月球形成事件之前,且假定的巨型撞击导致HSEs很少被吸积到地球核心。高精度测定月球的(182)W同位素组成有助于解决这个问题。

相似文献

1
Siderophile element constraints on the origin of the Moon.
Philos Trans A Math Phys Eng Sci. 2014 Sep 13;372(2024):20130258. doi: 10.1098/rsta.2013.0258.
2
Tungsten isotopic evidence for disproportional late accretion to the Earth and Moon.
Nature. 2015 Apr 23;520(7548):530-3. doi: 10.1038/nature14355. Epub 2015 Apr 8.
3
Highly siderophile elements in Earth's mantle as a clock for the Moon-forming impact.
Nature. 2014 Apr 3;508(7494):84-7. doi: 10.1038/nature13172.
4
Highly siderophile element constraints on accretion and differentiation of the Earth-Moon system.
Science. 2007 Jan 12;315(5809):217-9. doi: 10.1126/science.1133355.
5
Highly siderophile element depletion in the Moon.
Earth Planet Sci Lett. 2015 Aug 1;423:114-124. doi: 10.1016/j.epsl.2015.05.001. Epub 2015 May 13.
6
Lunar tungsten isotopic evidence for the late veneer.
Nature. 2015 Apr 23;520(7548):534-7. doi: 10.1038/nature14360. Epub 2015 Apr 8.
7
Fast accretion of the earth with a late moon-forming giant impact.
Proc Natl Acad Sci U S A. 2011 Oct 25;108(43):17604-9. doi: 10.1073/pnas.1108544108. Epub 2011 Oct 17.
8
Reconstructing the late-accretion history of the Moon.
Nature. 2019 Jul;571(7764):226-229. doi: 10.1038/s41586-019-1359-0. Epub 2019 Jul 10.
9
Ni isotopes provide a glimpse of Earth's pre-late-veneer mantle.
Sci Adv. 2023 Dec 15;9(50):eadj2170. doi: 10.1126/sciadv.adj2170.
10
Stochastic late accretion to Earth, the Moon, and Mars.
Science. 2010 Dec 10;330(6010):1527-30. doi: 10.1126/science.1196874.

引用本文的文献

1
Asteroid bombardment and the core of Theia as possible sources for the Earth's late veneer component.
Geochem Geophys Geosyst. 2016 Jul;17(7):2623-2642. doi: 10.1002/2016gc006305. Epub 2016 Jun 15.
2
Highly siderophile element depletion in the Moon.
Earth Planet Sci Lett. 2015 Aug 1;423:114-124. doi: 10.1016/j.epsl.2015.05.001. Epub 2015 May 13.
3
Tungsten Isotopes in Planets.
Annu Rev Earth Planet Sci. 2017 Aug;45:389-417. doi: 10.1146/annurev-earth-063016-020037. Epub 2017 Jun 7.
4
Siderophile Elements in Tracing Planetary Formation and Evolution.
Geochem Perspect. 2016;5(1):1-145. doi: 10.7185/geochempersp.5.1. Epub 2016 Apr 1.
5
Lunar tungsten isotopic evidence for the late veneer.
Nature. 2015 Apr 23;520(7548):534-7. doi: 10.1038/nature14360. Epub 2015 Apr 8.

本文引用的文献

1
Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning.
Science. 2012 Nov 23;338(6110):1047-52. doi: 10.1126/science.1225542. Epub 2012 Oct 17.
2
Early differentiation and volatile accretion recorded in deep-mantle neon and xenon.
Nature. 2012 Jun 6;486(7401):101-4. doi: 10.1038/nature11141.
3
Late accretion on the earliest planetesimals revealed by the highly siderophile elements.
Science. 2012 Apr 6;336(6077):72-5. doi: 10.1126/science.1214967.
4
182W evidence for long-term preservation of early mantle differentiation products.
Science. 2012 Mar 2;335(6072):1065-9. doi: 10.1126/science.1216351. Epub 2012 Feb 16.
5
The tungsten isotopic composition of the Earth's mantle before the terminal bombardment.
Nature. 2011 Sep 7;477(7363):195-8. doi: 10.1038/nature10399.
6
Stochastic late accretion to Earth, the Moon, and Mars.
Science. 2010 Dec 10;330(6010):1527-30. doi: 10.1126/science.1196874.
8
Early differentiation of the Earth and the problem of mantle siderophile elements: a new approach.
Science. 1991 Jul 19;253(5017):303-6. doi: 10.1126/science.253.5017.303.
9
Highly siderophile element constraints on accretion and differentiation of the Earth-Moon system.
Science. 2007 Jan 12;315(5809):217-9. doi: 10.1126/science.1133355.
10
Hf-W chronometry of lunar metals and the age and early differentiation of the Moon.
Science. 2005 Dec 9;310(5754):1671-4. doi: 10.1126/science.1118842. Epub 2005 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验