Suppr超能文献

使用遗传算法进行RNA-RNA相互作用预测。

RNA-RNA interaction prediction using genetic algorithm.

作者信息

Montaseri Soheila, Zare-Mirakabad Fatemeh, Moghadam-Charkari Nasrollah

机构信息

Department of Mathematics, Statistics and Computer Sciences, University of Tehran, Tehran, Iran.

Faculty of Mathematics & Computer Science, Amirkabir University of Technology, Tehran, Iran ; School of Biological Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395- 5746, Tehran, Iran.

出版信息

Algorithms Mol Biol. 2014 Jun 29;9:17. doi: 10.1186/1748-7188-9-17. eCollection 2014.

Abstract

BACKGROUND

RNA-RNA interaction plays an important role in the regulation of gene expression and cell development. In this process, an RNA molecule prohibits the translation of another RNA molecule by establishing stable interactions with it. In the RNA-RNA interaction prediction problem, two RNA sequences are given as inputs and the goal is to find the optimal secondary structure of two RNAs and between them. Some different algorithms have been proposed to predict RNA-RNA interaction structure. However, most of them suffer from high computational time.

RESULTS

In this paper, we introduce a novel genetic algorithm called GRNAs to predict the RNA-RNA interaction. The proposed algorithm is performed on some standard datasets with appropriate accuracy and lower time complexity in comparison to the other state-of-the-art algorithms. In the proposed algorithm, each individual is a secondary structure of two interacting RNAs. The minimum free energy is considered as a fitness function for each individual. In each generation, the algorithm is converged to find the optimal secondary structure (minimum free energy structure) of two interacting RNAs by using crossover and mutation operations.

CONCLUSIONS

This algorithm is properly employed for joint secondary structure prediction. The results achieved on a set of known interacting RNA pairs are compared with the other related algorithms and the effectiveness and validity of the proposed algorithm have been demonstrated. It has been shown that time complexity of the algorithm in each iteration is as efficient as the other approaches.

摘要

背景

RNA - RNA相互作用在基因表达调控和细胞发育中起着重要作用。在此过程中,一个RNA分子通过与另一个RNA分子建立稳定的相互作用来抑制其翻译。在RNA - RNA相互作用预测问题中,将两个RNA序列作为输入,目标是找到两个RNA及其之间的最佳二级结构。已经提出了一些不同的算法来预测RNA - RNA相互作用结构。然而,它们中的大多数都存在计算时间长的问题。

结果

在本文中,我们引入了一种名为GRNAs的新型遗传算法来预测RNA - RNA相互作用。与其他现有算法相比,该算法在一些标准数据集上以适当的准确率和更低的时间复杂度运行。在所提出的算法中,每个个体是两个相互作用RNA的二级结构。最小自由能被视为每个个体的适应度函数。在每一代中,该算法通过使用交叉和变异操作收敛以找到两个相互作用RNA的最佳二级结构(最小自由能结构)。

结论

该算法适用于联合二级结构预测。将在一组已知相互作用RNA对上获得的结果与其他相关算法进行比较,证明了所提算法的有效性和正确性。结果表明,该算法每次迭代的时间复杂度与其他方法一样高效。

相似文献

1
RNA-RNA interaction prediction using genetic algorithm.
Algorithms Mol Biol. 2014 Jun 29;9:17. doi: 10.1186/1748-7188-9-17. eCollection 2014.
2
A heuristic approach to RNA-RNA interaction prediction.
J Theor Biol. 2012 May 7;300:206-11. doi: 10.1016/j.jtbi.2012.01.025. Epub 2012 Jan 26.
3
Fast prediction of RNA-RNA interaction using heuristic algorithm.
Methods Mol Biol. 2015;1269:123-33. doi: 10.1007/978-1-4939-2291-8_7.
4
Fast prediction of RNA-RNA interaction.
Algorithms Mol Biol. 2010 Jan 4;5:5. doi: 10.1186/1748-7188-5-5.
5
Using temperature effects to predict the interactions between two RNAs.
J Theor Biol. 2015 Jan 7;364:98-102. doi: 10.1016/j.jtbi.2014.09.001. Epub 2014 Sep 10.
6
Analysis of energy-based algorithms for RNA secondary structure prediction.
BMC Bioinformatics. 2012 Feb 1;13:22. doi: 10.1186/1471-2105-13-22.
7
A New Method of RNA Secondary Structure Prediction Based on Convolutional Neural Network and Dynamic Programming.
Front Genet. 2019 May 22;10:467. doi: 10.3389/fgene.2019.00467. eCollection 2019.
8
TurboFold: iterative probabilistic estimation of secondary structures for multiple RNA sequences.
BMC Bioinformatics. 2011 Apr 20;12:108. doi: 10.1186/1471-2105-12-108.
9
The RNA Newton polytope and learnability of energy parameters.
Bioinformatics. 2013 Jul 1;29(13):i300-7. doi: 10.1093/bioinformatics/btt226.
10
RNAknot: A new algorithm for RNA secondary structure prediction based on genetic algorithm and GRASP method.
J Bioinform Comput Biol. 2019 Oct;17(5):1950031. doi: 10.1142/S0219720019500318.

引用本文的文献

1
RNA folding using quantum computers.
PLoS Comput Biol. 2022 Apr 11;18(4):e1010032. doi: 10.1371/journal.pcbi.1010032. eCollection 2022 Apr.
2
VfoldMCPX: predicting multistrand RNA complexes.
RNA. 2022 Apr;28(4):596-608. doi: 10.1261/rna.079020.121. Epub 2022 Jan 20.
4
RCPred: RNA complex prediction as a constrained maximum weight clique problem.
BMC Bioinformatics. 2019 Mar 29;20(Suppl 3):128. doi: 10.1186/s12859-019-2648-1.
5
A comprehensive comparison of general RNA-RNA interaction prediction methods.
Nucleic Acids Res. 2016 Apr 20;44(7):e61. doi: 10.1093/nar/gkv1477. Epub 2015 Dec 15.

本文引用的文献

1
A heuristic approach to RNA-RNA interaction prediction.
J Theor Biol. 2012 May 7;300:206-11. doi: 10.1016/j.jtbi.2012.01.025. Epub 2012 Jan 26.
2
Fast accessibility-based prediction of RNA-RNA interactions.
Bioinformatics. 2011 Jul 15;27(14):1934-40. doi: 10.1093/bioinformatics/btr281. Epub 2011 May 18.
3
RNA-RNA interaction prediction based on multiple sequence alignments.
Bioinformatics. 2011 Feb 15;27(4):456-63. doi: 10.1093/bioinformatics/btq659. Epub 2010 Dec 5.
4
PETcofold: predicting conserved interactions and structures of two multiple alignments of RNA sequences.
Bioinformatics. 2011 Jan 15;27(2):211-9. doi: 10.1093/bioinformatics/btq634. Epub 2010 Nov 18.
5
RactIP: fast and accurate prediction of RNA-RNA interaction using integer programming.
Bioinformatics. 2010 Sep 15;26(18):i460-6. doi: 10.1093/bioinformatics/btq372.
6
Fast prediction of RNA-RNA interaction.
Algorithms Mol Biol. 2010 Jan 4;5:5. doi: 10.1186/1748-7188-5-5.
7
Target prediction and a statistical sampling algorithm for RNA-RNA interaction.
Bioinformatics. 2010 Jan 15;26(2):175-81. doi: 10.1093/bioinformatics/btp635. Epub 2009 Nov 12.
8
On the approximation of optimal structures for RNA-RNA interaction.
IEEE/ACM Trans Comput Biol Bioinform. 2009 Oct-Dec;6(4):682-8. doi: 10.1109/TCBB.2007.70258.
9
IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions.
Bioinformatics. 2008 Dec 15;24(24):2849-56. doi: 10.1093/bioinformatics/btn544. Epub 2008 Oct 21.
10
UNAFold: software for nucleic acid folding and hybridization.
Methods Mol Biol. 2008;453:3-31. doi: 10.1007/978-1-60327-429-6_1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验