Suppr超能文献

生物矿化基质辅助人类胚胎干细胞的成骨分化

Biomineralized matrix-assisted osteogenic differentiation of human embryonic stem cells.

作者信息

Kang Heemin, Wen Cai, Hwang Yongsung, Shih Yu-Ru V, Kar Mrityunjoy, Seo Sung Wook, Varghese Shyni

机构信息

Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA ; Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA.

Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA ; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210018, China.

出版信息

J Mater Chem B. 2014 Sep 1;2(34):5676-5688. doi: 10.1039/C4TB00714J.

Abstract

The physical and chemical properties of a matrix play an important role in determining various cellular behaviors, including lineage specificity. We demonstrate that the differentiation commitment of human embryonic stem cells (hESCs), both and can be solely achieved through synthetic biomaterials. hESCs were cultured using mineralized synthetic matrices mimicking a calcium phosphate (CaP)-rich bone environment differentiated into osteoblasts in the absence of any osteogenic inducing supplements. When implanted , these hESC-laden mineralized matrices contributed to ectopic bone tissue formation. In contrast, cells within the corresponding non-mineralized matrices underwent either osteogenic or adipogenic fate depending upon the local cues present in the microenvironment. To our knowledge, this is the first demonstration where synthetic matrices are shown to induce terminal cell fate specification of hESCs exclusively by biomaterial-based cues both and . Technologies that utilize tissue specific cell-matrix interactions to control stem cell fate could be a powerful tool in regenerative medicine. Such approaches can be used as a tool to advance our basic understanding and assess the translational potential of stem cells.

摘要

基质的物理和化学性质在决定包括谱系特异性在内的各种细胞行为方面起着重要作用。我们证明,人类胚胎干细胞(hESCs)的分化承诺,无论是[此处原文缺失相关内容]还是[此处原文缺失相关内容],都可以仅通过合成生物材料来实现。在没有任何成骨诱导补充剂的情况下,使用模拟富含磷酸钙(CaP)的骨环境的矿化合成基质培养hESCs,其分化为成骨细胞。当植入[此处原文缺失相关内容]时,这些负载hESC的矿化基质促进了异位骨组织的形成。相比之下,相应非矿化基质中的细胞根据微环境中存在的局部线索经历成骨或成脂命运。据我们所知,这是首次证明合成基质仅通过基于生物材料的线索在[此处原文缺失相关内容]和[此处原文缺失相关内容]中诱导hESCs的终末细胞命运特化。利用组织特异性细胞 - 基质相互作用来控制干细胞命运的技术可能是再生医学中的一种强大工具。此类方法可作为一种工具来推进我们的基础理解并评估干细胞的转化潜力。

相似文献

1
Biomineralized matrix-assisted osteogenic differentiation of human embryonic stem cells.
J Mater Chem B. 2014 Sep 1;2(34):5676-5688. doi: 10.1039/C4TB00714J.
2
Adenosine Signaling Mediates Osteogenic Differentiation of Human Embryonic Stem Cells on Mineralized Matrices.
Front Bioeng Biotechnol. 2015 Nov 10;3:185. doi: 10.3389/fbioe.2015.00185. eCollection 2015.
3
4
Mineralized gelatin methacrylate-based matrices induce osteogenic differentiation of human induced pluripotent stem cells.
Acta Biomater. 2014 Dec;10(12):4961-4970. doi: 10.1016/j.actbio.2014.08.010. Epub 2014 Aug 18.
8
Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling.
Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):990-5. doi: 10.1073/pnas.1321717111. Epub 2014 Jan 6.
9
Human embryonic stem cells and macroporous calcium phosphate construct for bone regeneration in cranial defects in rats.
Acta Biomater. 2014 Oct;10(10):4484-93. doi: 10.1016/j.actbio.2014.06.027. Epub 2014 Jun 24.
10
In vitro culture and directed osteogenic differentiation of human pluripotent stem cells on peptides-decorated two-dimensional microenvironment.
ACS Appl Mater Interfaces. 2015 Mar 4;7(8):4560-72. doi: 10.1021/acsami.5b00188. Epub 2015 Feb 18.

引用本文的文献

1
Static and Dynamic Biomaterial Engineering for Cell Modulation.
Nanomaterials (Basel). 2022 Apr 17;12(8):1377. doi: 10.3390/nano12081377.
2
In Vivo Sequestration of Innate Small Molecules to Promote Bone Healing.
Adv Mater. 2020 Feb;32(8):e1906022. doi: 10.1002/adma.201906022. Epub 2019 Dec 12.
3
Hydrogels as Extracellular Matrix Analogs.
Gels. 2016 Aug 3;2(3):20. doi: 10.3390/gels2030020.
4
Functionally graded multilayer scaffolds for in vivo osteochondral tissue engineering.
Acta Biomater. 2018 Sep 15;78:365-377. doi: 10.1016/j.actbio.2018.07.039. Epub 2018 Jul 19.
5
Effect of age on biomaterial-mediated in situ bone tissue regeneration.
Acta Biomater. 2018 Sep 15;78:329-340. doi: 10.1016/j.actbio.2018.06.035. Epub 2018 Jun 30.
6
Tissue engineered bone mimetics to study bone disorders ex vivo: Role of bioinspired materials.
Biomaterials. 2019 Apr;198:107-121. doi: 10.1016/j.biomaterials.2018.06.005. Epub 2018 Jun 6.
7
Mineralized Biomaterials Mediated Repair of Bone Defects Through Endogenous Cells.
Tissue Eng Part A. 2018 Jul;24(13-14):1148-1156. doi: 10.1089/ten.TEA.2017.0297. Epub 2018 Mar 22.
8
Predehydration and Ice Seeding in the Presence of Trehalose Enable Cell Cryopreservation.
ACS Biomater Sci Eng. 2017 Aug 14;3(8):1758-1768. doi: 10.1021/acsbiomaterials.7b00201. Epub 2017 Jun 12.
9
In vivo engineering of bone tissues with hematopoietic functions and mixed chimerism.
Proc Natl Acad Sci U S A. 2017 May 23;114(21):5419-5424. doi: 10.1073/pnas.1702576114. Epub 2017 May 8.
10
Small molecule-driven direct conversion of human pluripotent stem cells into functional osteoblasts.
Sci Adv. 2016 Aug 31;2(8):e1600691. doi: 10.1126/sciadv.1600691. eCollection 2016 Aug.

本文引用的文献

1
Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling.
Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):990-5. doi: 10.1073/pnas.1321717111. Epub 2014 Jan 6.
2
Molecular mechanisms of biomaterial-driven osteogenic differentiation in human mesenchymal stromal cells.
Integr Biol (Camb). 2013 Jul 24;5(7):920-31. doi: 10.1039/c3ib40027a. Epub 2013 Jun 11.
3
Engineering bone tissue substitutes from human induced pluripotent stem cells.
Proc Natl Acad Sci U S A. 2013 May 21;110(21):8680-5. doi: 10.1073/pnas.1301190110. Epub 2013 May 7.
4
Effect of culture conditions and calcium phosphate coating on ectopic bone formation.
Biomaterials. 2013 Jul;34(22):5538-51. doi: 10.1016/j.biomaterials.2013.03.088. Epub 2013 Apr 25.
5
Biomaterials directed in vivo osteogenic differentiation of mesenchymal cells derived from human embryonic stem cells.
Tissue Eng Part A. 2013 Aug;19(15-16):1723-32. doi: 10.1089/ten.TEA.2013.0064. Epub 2013 May 15.
6
A screening approach reveals the influence of mineral coating morphology on human mesenchymal stem cell differentiation.
Biotechnol J. 2013 Apr;8(4):496-501. doi: 10.1002/biot.201200204. Epub 2013 Mar 7.
7
Effect of scaffold microarchitecture on osteogenic differentiation of human mesenchymal stem cells.
Eur Cell Mater. 2013 Jan 18;25:114-129. doi: 10.22203/ecm.v025a08.
8
The homing of bone marrow MSCs to non-osseous sites for ectopic bone formation induced by osteoinductive calcium phosphate.
Biomaterials. 2013 Mar;34(9):2167-76. doi: 10.1016/j.biomaterials.2012.12.010. Epub 2013 Jan 5.
9
In vivo directed differentiation of pluripotent stem cells for skeletal regeneration.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20379-84. doi: 10.1073/pnas.1218052109. Epub 2012 Nov 20.
10
Engineering cell-material interfaces for long-term expansion of human pluripotent stem cells.
Biomaterials. 2013 Jan;34(4):912-21. doi: 10.1016/j.biomaterials.2012.10.020. Epub 2012 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验