Sun Cheng, Mueller Rachel Lockridge
Genome Biol Evol. 2014 Jul;6(7):1818-29. doi: 10.1093/gbe/evu143.
Among animals, genome sizes range from 20 Mb to 130 Gb, with 380-fold variation across vertebrates. Most of the largest vertebrate genomes are found in salamanders, an amphibian clade of 660 species. Thus, salamanders are an important system for studying causes and consequences of genomic gigantism. Previously, we showed that plethodontid salamander genomes accumulate higher levels of long terminal repeat (LTR) retrotransposons than do other vertebrates, although the evolutionary origins of such sequences remained unexplored. We also showed that some salamanders in the family Plethodontidae have relatively slow rates of DNA loss through small insertions and deletions. Here, we present new data from Cryptobranchus alleganiensis, the hellbender. Cryptobranchus and Plethodontidae span the basal phylogenetic split within salamanders; thus, analyses incorporating these taxa can shed light on the genome of the ancestral crown salamander lineage, which underwent expansion. We show that high levels of LTR retrotransposons likely characterize all crown salamanders, suggesting that disproportionate expansion of this transposable element (TE) class contributed to genomic expansion. Phylogenetic and age distribution analyses of salamander LTR retrotransposons indicate that salamanders' high TE levels reflect persistence and diversification of ancestral TEs rather than horizontal transfer events. Finally, we show that relatively slow DNA loss rates through small indels likely characterize all crown salamanders, suggesting that a decreased DNA loss rate contributed to genomic expansion at the clade's base. Our identification of shared genomic features across phylogenetically distant salamanders is a first step toward identifying the evolutionary processes underlying accumulation and persistence of high levels of repetitive sequence in salamander genomes.
在动物中,基因组大小范围从20兆碱基对到130吉碱基对,脊椎动物之间存在380倍的差异。大多数最大的脊椎动物基因组存在于蝾螈中,蝾螈是一个有660个物种的两栖类分支。因此,蝾螈是研究基因组巨大化的原因和后果的重要系统。此前,我们发现无肺螈科蝾螈基因组积累的长末端重复(LTR)逆转座子水平比其他脊椎动物更高,尽管此类序列的进化起源仍未得到探索。我们还发现,无肺螈科的一些蝾螈通过小插入和缺失导致的DNA丢失速率相对较慢。在此,我们展示了隐鳃鲵属的阿勒格尼隐鳃鲵的新数据。隐鳃鲵属和无肺螈科跨越了蝾螈基部的系统发育分支;因此,纳入这些分类群的分析可以揭示经历了基因组扩张的祖先冠蝾螈谱系的基因组情况。我们发现,所有冠蝾螈可能都具有高水平的LTR逆转座子,这表明这种转座元件(TE)类别的不成比例扩张促成了基因组扩张。对蝾螈LTR逆转座子的系统发育和年龄分布分析表明,蝾螈的高TE水平反映了祖先TE的持续存在和多样化,而非水平转移事件。最后,我们发现所有冠蝾螈可能都具有通过小插入缺失导致的相对较慢的DNA丢失速率,这表明DNA丢失速率降低促成了该分支基部的基因组扩张。我们在系统发育上距离较远的蝾螈中鉴定出共享的基因组特征,这是朝着确定蝾螈基因组中高水平重复序列积累和持续存在背后的进化过程迈出的第一步。