Laboratory for Membrane Physiology and -Technology, Department of Physiology, University of Freiburg, Hermann-Herder-Str. 7, 79104, Freiburg, Germany.
Small. 2015 Jan 7;11(1):119-25. doi: 10.1002/smll.201402016. Epub 2014 Aug 13.
Efficient use of membrane protein nanopores in ionic single-molecule sensing requires technology for the reliable formation of suspended molecular membranes densely arrayed in formats that allow high-resolution electrical recording. Here, automated formation of bimolecular lipid layers is shown using a simple process where a poly(tetrafluoroethylene)-coated magnetic bar is remotely actuated to perform a turning motion, thereby spreading phospholipid in organic solvent on a nonpolar surface containing a <1 mm(2) 4 × 4 array of apertures with embedded microelectrodes (microelectrode cavity array). Parallel and high-resolution single-molecule detection by single nanopores is demonstrated on the resulting bilayer arrays, which are shown to form by a classical but very rapid self-assembly process. The technique provides a robust and scalable solution for the problem of reliable, automated formation of multiple independent lipid bilayers in a dense microarray format, while preserving the favorable electrical properties of the microelectrode cavity array.
高效利用膜蛋白纳米孔进行离子单分子感应需要一种技术,能够可靠地形成密集排列的悬浮分子膜,其格式允许进行高分辨率的电记录。在这里,使用一种简单的过程展示了双分子脂质层的自动形成,其中一个涂有聚四氟乙烯的磁性棒被远程驱动以执行转向运动,从而将磷脂在有机溶剂中展开在包含嵌入式微电极(微电极腔阵列)的非极性表面上的<1mm24×4 个孔的阵列上。在由此产生的双层阵列上证明了平行和高分辨率的单分子检测,结果表明这些双层阵列是通过经典但非常快速的自组装过程形成的。该技术为可靠、自动形成密集微阵列格式中多个独立脂质双层的问题提供了一种强大且可扩展的解决方案,同时保留了微电极腔阵列的有利电气特性。