Suppr超能文献

低能β(-)发射体所致剂量沉积与DNA损伤的建模

Modeling dose deposition and DNA damage due to low-energy β(-) emitters.

作者信息

Alloni D, Cutaia C, Mariotti L, Friedland W, Ottolenghi A

机构信息

a  Department of Physics, University of Pavia, 27100, Pavia, Italy.

出版信息

Radiat Res. 2014 Sep;182(3):322-30. doi: 10.1667/RR13664.1. Epub 2014 Aug 12.

Abstract

One of the main issues of low-energy internal emitters concerns the very short ranges of the beta particles, versus the dimensions of the biological targets. Depending on the chemical form, the radionuclide may be more concentrated either in the cytoplasm or in the nucleus of the target cell. Consequently, since in most cases conventional dosimetry neglects this issue it may overestimate or underestimate the dose to the nucleus and hence the biological effects. To assess the magnitude of these deviations and to provide a realistic evaluation of the localized energy deposition by low-energy internal emitters, the biophysical track-structure code PARTRAC was used to calculate nuclear doses, DNA damage yields and fragmentation patterns for different localizations of radionuclides in human interphase fibroblasts. The nuclides considered in the simulations were tritium and nickel-63, which emit electrons with average energies of 5.7 (range in water of 0.42 μm) and 17 keV (range of 5 μm), respectively, covering both very short and medium ranges of beta-decay products. The simulation results showed that the largest deviations from the conventional dosimetry occur for inhomogeneously distributed short-range emitters. For uniformly distributed radionuclides selectively in the cytoplasm but excluded from the cell nucleus, the dose in the nucleus is 15% of the average dose in the cell in the case of tritium but 64% for nickel-63. Also, the numbers of double-strand breaks (DSBs) and the distributions of DNA fragments depend on subcellular localization of the radionuclides. In the low- and medium-dose regions investigated here, DSB numbers are proportional to the nuclear dose, with about 50 DSB/Gy for both studied nuclides. In addition, DSB numbers on specific chromosomes depend on the radionuclide localization in the cell as well, with chromosomes located more peripherally in the cell nucleus being more damaged by short-ranged emitters in cytoplasm compared with chromosomes located more centrally. These results illustrate the potential for over- or underestimating the risk associated with low-energy emitters, particularly for tritium intake, when their distribution at subcellular levels is not appropriately considered.

摘要

低能内照射源的一个主要问题涉及β粒子的射程极短,与生物靶标的尺寸相比。根据化学形式,放射性核素可能在靶细胞的细胞质或细胞核中更集中。因此,由于在大多数情况下传统剂量学忽略了这个问题,它可能高估或低估对细胞核的剂量,进而高估或低估生物效应。为了评估这些偏差的程度,并对低能内照射源的局部能量沉积进行实际评估,使用生物物理径迹结构代码PARTRAC来计算人类间期成纤维细胞中放射性核素不同定位的核剂量、DNA损伤产率和片段化模式。模拟中考虑的核素是氚和镍 - 63,它们分别发射平均能量为5.7 keV(在水中射程为0.42μm)和17 keV(射程为5μm)的电子,涵盖了β衰变产物的极短和中等射程。模拟结果表明,与传统剂量学的最大偏差出现在短射程发射体分布不均匀的情况下。对于均匀分布在细胞质中但被排除在细胞核之外的放射性核素,在氚的情况下,细胞核中的剂量是细胞平均剂量的15%,而对于镍 - 63则为64%。此外,双链断裂(DSB)的数量和DNA片段的分布也取决于放射性核素的亚细胞定位。在这里研究的低剂量和中等剂量区域,DSB数量与核剂量成正比,两种研究核素的DSB数量约为50 DSB/Gy。此外,特定染色体上的DSB数量也取决于放射性核素在细胞中的定位,与位于细胞核更中心的染色体相比,位于细胞核更外围的染色体在细胞质中受到短射程发射体的损伤更大。这些结果说明了在未适当考虑低能发射体在亚细胞水平的分布时,高估或低估其相关风险的可能性,特别是对于氚摄入而言。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验