文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

双向货物运输:超越拉锯战。

Bidirectional cargo transport: moving beyond tug of war.

机构信息

Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

出版信息

Nat Rev Mol Cell Biol. 2014 Sep;15(9):615-28. doi: 10.1038/nrm3853. Epub 2014 Aug 16.


DOI:10.1038/nrm3853
PMID:25118718
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5014371/
Abstract

Vesicles, organelles and other intracellular cargo are transported by kinesin and dynein motors, which move in opposite directions along microtubules. This bidirectional cargo movement is frequently described as a 'tug of war' between oppositely directed molecular motors attached to the same cargo. However, although many experimental and modelling studies support the tug-of-war paradigm, numerous knockout and inhibition studies in various systems have found that inhibiting one motor leads to diminished motility in both directions, which is a 'paradox of co-dependence' that challenges the paradigm. In an effort to resolve this paradox, three classes of bidirectional transport models--microtubule tethering, mechanical activation and steric disinhibition--are proposed, and a general mathematical modelling framework for bidirectional cargo transport is put forward to guide future experiments.

摘要

囊泡、细胞器和其他细胞内货物由驱动蛋白和动力蛋白马达运输,这些马达沿着微管向相反的方向移动。这种双向货物运动通常被描述为附着在同一货物上的相反方向分子马达之间的“拔河比赛”。然而,尽管许多实验和建模研究支持拔河比赛范式,但在各种系统中的许多敲除和抑制研究发现,抑制一个马达会导致两个方向的运动能力下降,这是一个“相互依赖的悖论”,挑战了这一范式。为了解决这一悖论,提出了三类双向运输模型——微管连接、机械激活和空间抑制解除,并提出了一个用于指导未来实验的双向货物运输的通用数学建模框架。

相似文献

[1]
Bidirectional cargo transport: moving beyond tug of war.

Nat Rev Mol Cell Biol. 2014-8-16

[2]
Kinesin-1, -2, and -3 motors use family-specific mechanochemical strategies to effectively compete with dynein during bidirectional transport.

Elife. 2022-9-20

[3]
Engineered Tug-of-War Between Kinesin and Dynein Controls Direction of Microtubule Based Transport In Vivo.

Traffic. 2016-5

[4]
Stable tug-of-war between kinesin-1 and cytoplasmic dynein upon different ATP and roadblock concentrations.

J Cell Sci. 2020-11-30

[5]
Motor coordination via a tug-of-war mechanism drives bidirectional vesicle transport.

Curr Biol. 2010-4-15

[6]
Assessing the Impact of Electrostatic Drag on Processive Molecular Motor Transport.

Bull Math Biol. 2018-6-4

[7]
Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors.

Proc Natl Acad Sci U S A. 2008-3-25

[8]
Bidirectional helical motility of cytoplasmic dynein around microtubules.

Elife. 2014-7-28

[9]
The mammalian dynein-dynactin complex is a strong opponent to kinesin in a tug-of-war competition.

Nat Cell Biol. 2016-9

[10]
Microtubule motors mediate endosomal sorting by maintaining functional domain organization.

J Cell Sci. 2013-4-2

引用本文的文献

[1]
Cytoskeletal Proteins and Alzheimer's Disease Pathogenesis: Focusing on the Interplay with Tau Pathology.

Biomolecules. 2025-6-6

[2]
Stick-slip motion and universal statistics of cargo transport within living cells.

bioRxiv. 2025-5-23

[3]
Nuclear deformation by microtubule molecular motors.

PLoS Comput Biol. 2025-5-8

[4]
Molecular basis for assembly and activation of the Hook3 - KIF1C complex-dependent transport machinery.

EMBO Rep. 2025-5-1

[5]
Cloning of nf-profilin and intercellular interaction with nf-actin in Naegleria fowleri cysts.

Sci Rep. 2025-2-27

[6]
Heterogeneous model for superdiffusive movement of dense core vesicles in C. elegans.

Sci Rep. 2025-2-27

[7]
Ultrasensitivity without conformational spread: A mechanical origin for non-equilibrium cooperativity in the bacterial flagellar motor.

ArXiv. 2025-2-5

[8]
KIF1C activates and extends dynein movement through the FHF cargo adapter.

Nat Struct Mol Biol. 2025-4

[9]
DNA tensiometer reveals catch-bond detachment kinetics of kinesin-1, -2 and -3.

bioRxiv. 2025-3-25

[10]
Dynamic satellite-parent liposome networks for quantitative microreactions.

Chem Sci. 2024-11-6

本文引用的文献

[1]
Axon and dendritic trafficking.

Curr Opin Neurobiol. 2014-8

[2]
UV irradiation accelerates amyloid precursor protein (APP) processing and disrupts APP axonal transport.

J Neurosci. 2014-2-26

[3]
Motor domain phosphorylation modulates kinesin-1 transport.

J Biol Chem. 2013-9-26

[4]
JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors.

J Cell Biol. 2013-7-29

[5]
Teamwork in microtubule motors.

Trends Cell Biol. 2013-7-20

[6]
Local cytoskeletal and organelle interactions impact molecular-motor- driven early endosomal trafficking.

Curr Biol. 2013-6-13

[7]
Mitochondrial trafficking in neurons.

Cold Spring Harb Perspect Biol. 2013-6-1

[8]
In vivo optical trapping indicates kinesin's stall force is reduced by dynein during intracellular transport.

Proc Natl Acad Sci U S A. 2013-2-12

[9]
TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites.

Neuron. 2013-2-6

[10]
Molecular adaptations allow dynein to generate large collective forces inside cells.

Cell. 2013-1-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索