Suppr超能文献

致癌基因消融抗性胰腺癌细胞依赖于线粒体功能。

Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function.

作者信息

Viale Andrea, Pettazzoni Piergiorgio, Lyssiotis Costas A, Ying Haoqiang, Sánchez Nora, Marchesini Matteo, Carugo Alessandro, Green Tessa, Seth Sahil, Giuliani Virginia, Kost-Alimova Maria, Muller Florian, Colla Simona, Nezi Luigi, Genovese Giannicola, Deem Angela K, Kapoor Avnish, Yao Wantong, Brunetto Emanuela, Kang Ya'an, Yuan Min, Asara John M, Wang Y Alan, Heffernan Timothy P, Kimmelman Alec C, Wang Huamin, Fleming Jason B, Cantley Lewis C, DePinho Ronald A, Draetta Giulio F

机构信息

1] Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [3].

Department of Medicine, Weill Cornell Medical College, New York, New York 10065, USA.

出版信息

Nature. 2014 Oct 30;514(7524):628-32. doi: 10.1038/nature13611. Epub 2014 Aug 10.

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in western countries, with a median survival of 6 months and an extremely low percentage of long-term surviving patients. KRAS mutations are known to be a driver event of PDAC, but targeting mutant KRAS has proved challenging. Targeting oncogene-driven signalling pathways is a clinically validated approach for several devastating diseases. Still, despite marked tumour shrinkage, the frequency of relapse indicates that a fraction of tumour cells survives shut down of oncogenic signalling. Here we explore the role of mutant KRAS in PDAC maintenance using a recently developed inducible mouse model of mutated Kras (Kras(G12D), herein KRas) in a p53(LoxP/WT) background. We demonstrate that a subpopulation of dormant tumour cells surviving oncogene ablation (surviving cells) and responsible for tumour relapse has features of cancer stem cells and relies on oxidative phosphorylation for survival. Transcriptomic and metabolic analyses of surviving cells reveal prominent expression of genes governing mitochondrial function, autophagy and lysosome activity, as well as a strong reliance on mitochondrial respiration and a decreased dependence on glycolysis for cellular energetics. Accordingly, surviving cells show high sensitivity to oxidative phosphorylation inhibitors, which can inhibit tumour recurrence. Our integrated analyses illuminate a therapeutic strategy of combined targeting of the KRAS pathway and mitochondrial respiration to manage pancreatic cancer.

摘要

胰腺导管腺癌(PDAC)是西方国家最致命的癌症之一,中位生存期为6个月,长期存活患者的比例极低。已知KRAS突变是PDAC的驱动事件,但靶向突变型KRAS已被证明具有挑战性。针对致癌基因驱动的信号通路是一种经临床验证的治疗多种严重疾病的方法。然而,尽管肿瘤明显缩小,但复发频率表明,一部分肿瘤细胞在致癌信号关闭后仍能存活。在这里,我们使用最近开发的在p53(LoxP/WT)背景下的可诱导突变型Kras(Kras(G12D),以下简称KRas)小鼠模型,探索突变型KRAS在PDAC维持中的作用。我们证明,致癌基因消融后存活的休眠肿瘤细胞亚群(存活细胞)是肿瘤复发的原因,具有癌症干细胞的特征,并且依赖氧化磷酸化来维持生存。对存活细胞的转录组学和代谢分析揭示了控制线粒体功能、自噬和溶酶体活性的基因的显著表达,以及对线粒体呼吸的强烈依赖和对糖酵解的细胞能量依赖的降低。因此,存活细胞对氧化磷酸化抑制剂表现出高度敏感性,氧化磷酸化抑制剂可以抑制肿瘤复发。我们的综合分析阐明了一种联合靶向KRAS通路和线粒体呼吸来治疗胰腺癌的策略。

相似文献

1
Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function.
Nature. 2014 Oct 30;514(7524):628-32. doi: 10.1038/nature13611. Epub 2014 Aug 10.
2
Oncogenic KRAS Induces NIX-Mediated Mitophagy to Promote Pancreatic Cancer.
Cancer Discov. 2019 Sep;9(9):1268-1287. doi: 10.1158/2159-8290.CD-18-1409. Epub 2019 Jul 1.
4
Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice.
Gastroenterology. 2014 Nov;147(5):1119-33.e4. doi: 10.1053/j.gastro.2014.08.002. Epub 2014 Aug 12.
5
p53 status determines the role of autophagy in pancreatic tumour development.
Nature. 2013 Dec 12;504(7479):296-300. doi: 10.1038/nature12865. Epub 2013 Dec 4.
7
Ribonucleoprotein HNRNPA2B1 interacts with and regulates oncogenic KRAS in pancreatic ductal adenocarcinoma cells.
Gastroenterology. 2014 Oct;147(4):882-892.e8. doi: 10.1053/j.gastro.2014.06.041. Epub 2014 Jul 3.
9
Oncogenic KRAS supports pancreatic cancer through regulation of nucleotide synthesis.
Nat Commun. 2018 Nov 23;9(1):4945. doi: 10.1038/s41467-018-07472-8.
10
Targeting mTOR dependency in pancreatic cancer.
Gut. 2014 Sep;63(9):1481-9. doi: 10.1136/gutjnl-2013-306202. Epub 2014 Apr 9.

引用本文的文献

3
ZBTB11 depletion targets metabolic vulnerabilities in KRAS inhibitor-resistant PDAC.
Nat Chem Biol. 2025 Aug 11. doi: 10.1038/s41589-025-01978-1.
4
"Molecular pigeon" network of lncRNA and miRNA: decoding metabolic reprogramming in patients with lung cancer.
Front Oncol. 2025 Jul 17;15:1578927. doi: 10.3389/fonc.2025.1578927. eCollection 2025.
5
Mitochondrial inflexibility ignites tumor immunogenicity in postoperative glioblastoma.
Nat Commun. 2025 Jul 28;16(1):6946. doi: 10.1038/s41467-025-62244-5.
6
Metabolic adaptations of brain metastasis.
Nat Rev Cancer. 2025 Jul 24. doi: 10.1038/s41568-025-00848-1.
7
Exploring the oncogenic impact of heteroplasmic truncating mutations.
Mitochondrial Commun. 2025;3:26-43. doi: 10.1016/j.mitoco.2025.03.001. Epub 2025 Mar 26.
9
The Metabolic Landscape of Cancer Stem Cells: Insights and Implications for Therapy.
Cells. 2025 May 15;14(10):717. doi: 10.3390/cells14100717.
10
DAZAP1 maintains gastric cancer stemness by inducing mitophagy.
JCI Insight. 2025 May 22;10(10). doi: 10.1172/jci.insight.175422.

本文引用的文献

1
Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway.
Nature. 2013 Apr 4;496(7443):101-5. doi: 10.1038/nature12040. Epub 2013 Mar 27.
2
Which drug, and when, for patients with BRAF-mutant melanoma?
Lancet Oncol. 2013 Feb;14(2):e60-9. doi: 10.1016/S1470-2045(12)70539-9.
3
BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells.
Cell Stem Cell. 2013 Mar 7;12(3):329-41. doi: 10.1016/j.stem.2012.12.013. Epub 2013 Jan 17.
5
Mammalian transcription factor A is a core component of the mitochondrial transcription machinery.
Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16510-5. doi: 10.1073/pnas.1119738109. Epub 2012 Sep 24.
6
Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism.
Cell. 2012 Apr 27;149(3):656-70. doi: 10.1016/j.cell.2012.01.058.
8
Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia.
Cancer Cell. 2011 Nov 15;20(5):674-88. doi: 10.1016/j.ccr.2011.10.015.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验