Keoh Li Qing, Chiu Ching-Feng, Ramasamy Thamil Selvee
Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
Stem Cell Rev Rep. 2025 Aug 29. doi: 10.1007/s12015-025-10956-y.
Metabolic plasticity is a hallmark of cancer, enabling tumour cells to grow and adapt to microenvironmental stress, eventually contributing to tumour heterogeneity. Although glycolysis-oxidative phosphorylation (OXPHOS) switch plays a pivotal role, emerging evidence highlights OXPHOS as an essential mechanism for cancer survival, particularly during metastasis and therapeutic stress, underscoring the complexities underlying metabolic plasticity and tumour heterogeneity. The role of glycolysis-OXPHOS switch in cancer stem cells (CSCs), a highly aggressive and drug-resistant population frequently enriched in response to the stress of tumour growth and pressure from microenvironmental or therapeutic cues, remains an open question with therapeutic interventions yielding mixed outcomes. While some strategies suppress CSC activity, others inadvertently promote resistance and tumour aggressiveness, thus contributing to treatment failure and relapse. This review critically examines the role of glycolysis-OXPHOS switch as a gatekeeper of tumorigenesis which influences CSC plasticity and resistance. By dissecting these metabolic dynamics, it aims to inform novel therapeutic strategies, emphasising tailored approaches to target CSC plasticity and improve cancer treatment outcomes.
代谢可塑性是癌症的一个标志,它使肿瘤细胞能够生长并适应微环境压力,最终导致肿瘤异质性。尽管糖酵解-氧化磷酸化(OXPHOS)转换起着关键作用,但新出现的证据强调OXPHOS是癌症存活的重要机制,尤其是在转移和治疗应激期间,这凸显了代谢可塑性和肿瘤异质性背后的复杂性。糖酵解-OXPHOS转换在癌症干细胞(CSCs)中的作用仍然是一个悬而未决的问题,癌症干细胞是一个高度侵袭性和耐药性的群体,经常在肿瘤生长应激以及微环境或治疗线索的压力下富集,治疗干预的结果好坏参半。虽然一些策略抑制了癌症干细胞的活性,但其他策略却无意中促进了耐药性和肿瘤侵袭性,从而导致治疗失败和复发。本综述批判性地审视了糖酵解-OXPHOS转换作为肿瘤发生的守门人所起的作用,该作用影响癌症干细胞的可塑性和耐药性。通过剖析这些代谢动态,旨在为新的治疗策略提供依据,强调采用量身定制的方法来靶向癌症干细胞的可塑性并改善癌症治疗效果。