文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

探索异质性截短突变的致癌影响。

Exploring the oncogenic impact of heteroplasmic truncating mutations.

作者信息

Wu Yuanyuan, Ye Jiangbin, Gu Zhenglong

机构信息

Division of Nutritional Sciences, Cornell University, Savage Hall, Ithaca, 14850, NY, USA.

Department of Radiation Oncology, Stanford University School of Medicine, 94305, CA, USA.

出版信息

Mitochondrial Commun. 2025;3:26-43. doi: 10.1016/j.mitoco.2025.03.001. Epub 2025 Mar 26.


DOI:10.1016/j.mitoco.2025.03.001
PMID:40671877
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12266708/
Abstract

Numerous mitochondrial DNA (mtDNA) variants are associated with cancers, yet the causal link remains inconclusive. Using DddA-derived cytosine base editors, we induced truncating mutations in in HEK293 cells, establishing heteroplasmy, the coexistence of mutant and wild-type mtDNA. This study aimed to investigate the full molecular etiology following these deleterious mtDNA mutations, particularly in oncogenesis. We found that low to moderate heteroplasmic levels of the mutants were sufficient to impair mitochondrial functions and alter cellular redox status. Cellular adaptation to elevated ROS (Reactive Oxygen Species), energy crisis, and altered redox status was observed across varying heteroplasmy levels. Increased oncogenic potential was confirmed through oncogenesis and xenograft assays. Transcriptomic analysis revealed upregulated migration, invasion, and genome instability pathways, and downregulated ROS scavenging pathways. Our results demonstrate that mutations drive cancer progression by increasing cellular ROS and genome instability, and by altering the redox balance and epigenetic landscapes.

摘要

许多线粒体DNA(mtDNA)变体与癌症相关,但因果关系仍不明确。我们使用源自DddA的胞嘧啶碱基编辑器在HEK293细胞中诱导截短突变,建立异质性,即突变型和野生型mtDNA共存。本研究旨在探究这些有害mtDNA突变后的完整分子病因,特别是在肿瘤发生方面。我们发现,低至中等异质性水平的突变体足以损害线粒体功能并改变细胞氧化还原状态。在不同的异质性水平上均观察到细胞对升高的活性氧(ROS)、能量危机和改变的氧化还原状态的适应。通过肿瘤发生和异种移植试验证实了致癌潜力增加。转录组分析显示迁移、侵袭和基因组不稳定途径上调,而ROS清除途径下调。我们的结果表明,突变通过增加细胞ROS和基因组不稳定,以及改变氧化还原平衡和表观遗传景观来驱动癌症进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaea/12266708/f3cd040ae65f/nihms-2077304-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaea/12266708/9eddfa9b77f5/nihms-2077304-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaea/12266708/08b2b45b3c05/nihms-2077304-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaea/12266708/2b5d8997a2e3/nihms-2077304-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaea/12266708/96cc5968ac6f/nihms-2077304-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaea/12266708/ad5780bbbfab/nihms-2077304-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaea/12266708/f3cd040ae65f/nihms-2077304-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaea/12266708/9eddfa9b77f5/nihms-2077304-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaea/12266708/08b2b45b3c05/nihms-2077304-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaea/12266708/2b5d8997a2e3/nihms-2077304-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaea/12266708/96cc5968ac6f/nihms-2077304-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaea/12266708/ad5780bbbfab/nihms-2077304-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaea/12266708/f3cd040ae65f/nihms-2077304-f0005.jpg

相似文献

[1]
Exploring the oncogenic impact of heteroplasmic truncating mutations.

Mitochondrial Commun. 2025

[2]
Mitochondrial DNA-Associated Leigh Syndrome Spectrum

1993

[3]
The interplay between mitochondrial DNA genotypes, female infertility, ovarian response, and mutagenesis in oocytes.

Hum Reprod Open. 2024-12-30

[4]
A cohort study of neonatal hearing testing and genetic screening for variants associated with susceptibility to aminoglycoside antibiotic-induced hearing loss in Beijing, China.

Medicine (Baltimore). 2025-6-27

[5]
Mitochondrial Donation and Preimplantation Genetic Testing for mtDNA Disease.

N Engl J Med. 2025-7-31

[6]
Rewriting nuclear epigenetic scripts in mitochondrial diseases as a strategy for heteroplasmy control.

bioRxiv. 2025-4-15

[7]
Mitochondrial PTRH2 controls the deubiquitinase TRABID to regulate mt-ND5 stability and metabolism.

PNAS Nexus. 2025-5-31

[8]
MELAS

1993

[9]
Unraveling bidirectional evolution of unstable mitochondrial DNA mutations in hepatocellular carcinoma at single-cell resolution.

Hepatology. 2025-7-1

[10]
Leber Hereditary Optic Neuropathy

1993

本文引用的文献

[1]
Immune evasion through mitochondrial transfer in the tumour microenvironment.

Nature. 2025-2

[2]
Cellular ATP demand creates metabolically distinct subpopulations of mitochondria.

Nature. 2024-11

[3]
Mitochondrial dysfunction route as a possible biomarker and therapy target for human cancer.

Biomed J. 2025-2

[4]
Fumarate hydratase (FH) and cancer: a paradigm of oncometabolism.

Br J Cancer. 2023-11

[5]
Nicotinamide Adenine Dinucleotide Precursor Suppresses Hepatocellular Cancer Progression in Mice.

Nutrients. 2023-3-17

[6]
NAD supplementation limits triple-negative breast cancer metastasis via SIRT1-P66Shc signaling.

Oncogene. 2023-3

[7]
High-frequency and functional mitochondrial DNA mutations at the single-cell level.

Proc Natl Acad Sci U S A. 2023-1-3

[8]
Mitochondrial Uncoupling Induces Epigenome Remodeling and Promotes Differentiation in Neuroblastoma.

Cancer Res. 2023-1-18

[9]
Mitochondrial DNA is a major source of driver mutations in cancer.

Trends Cancer. 2022-12

[10]
Saturation of the mitochondrial NADH shuttles drives aerobic glycolysis in proliferating cells.

Mol Cell. 2022-9-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索