Martinez Edson Z, Achcar Jorge A
Department of Social Medicine, University of São Paulo (USP), Ribeirão Preto School of Medicine, Brazil.
Department of Social Medicine, University of São Paulo (USP), Ribeirão Preto School of Medicine, Brazil.
Comput Methods Programs Biomed. 2014 Nov;117(2):145-57. doi: 10.1016/j.cmpb.2014.07.011. Epub 2014 Aug 1.
The cure fraction models have been widely used to analyze survival data in which a proportion of the individuals is not susceptible to the event of interest. In this article, we introduce a bivariate model for survival data with a cure fraction based on the three-parameter generalized Lindley distribution. The joint distribution of the survival times is obtained by using copula functions. We consider three types of copula function models, the Farlie-Gumbel-Morgenstern (FGM), Clayton and Gumbel-Barnett copulas. The model is implemented under a Bayesian framework, where the parameter estimation is based on Markov Chain Monte Carlo (MCMC) techniques. To illustrate the utility of the model, we consider an application to a real data set related to an invasive cervical cancer study.
治愈分数模型已被广泛用于分析生存数据,其中一部分个体对感兴趣的事件不敏感。在本文中,我们基于三参数广义林德利分布引入了一种用于具有治愈分数的生存数据的双变量模型。生存时间的联合分布通过使用copula函数获得。我们考虑三种类型的copula函数模型,即法利-甘贝尔-摩根斯坦(FGM)、克莱顿和甘贝尔-巴尼特copulas。该模型在贝叶斯框架下实现,其中参数估计基于马尔可夫链蒙特卡罗(MCMC)技术。为了说明该模型的实用性,我们考虑将其应用于与浸润性宫颈癌研究相关的真实数据集。