Strelioff Christopher C, Crutchfield James P, Hübler Alfred W
Center for Computational Science & Engineering and Physics Department, University of California at Davis, One Shields Avenue, Davis, California 95616, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jul;76(1 Pt 1):011106. doi: 10.1103/PhysRevE.76.011106. Epub 2007 Jul 12.
Markov chains are a natural and well understood tool for describing one-dimensional patterns in time or space. We show how to infer kth order Markov chains, for arbitrary k , from finite data by applying Bayesian methods to both parameter estimation and model-order selection. Extending existing results for multinomial models of discrete data, we connect inference to statistical mechanics through information-theoretic (type theory) techniques. We establish a direct relationship between Bayesian evidence and the partition function which allows for straightforward calculation of the expectation and variance of the conditional relative entropy and the source entropy rate. Finally, we introduce a method that uses finite data-size scaling with model-order comparison to infer the structure of out-of-class processes.
马尔可夫链是用于描述时间或空间中一维模式的自然且广为人知的工具。我们展示了如何通过将贝叶斯方法应用于参数估计和模型阶数选择,从有限数据中推断任意阶(k)的(k)阶马尔可夫链。扩展离散数据多项模型的现有结果,我们通过信息理论(类型理论)技术将推断与统计力学联系起来。我们建立了贝叶斯证据与配分函数之间的直接关系,这使得能够直接计算条件相对熵和源熵率的期望和方差。最后,我们介绍一种使用有限数据大小缩放与模型阶数比较来推断类外过程结构的方法。