Romeo Jose S, Meyer Renate, Gallardo Diego I
Department of Mathematics, University of Santiago, Santiago, Chile.
SHORE and Whariki Research Centre, College of Health, Massey University, Auckland, New Zealand.
Lifetime Data Anal. 2018 Apr;24(2):355-383. doi: 10.1007/s10985-017-9396-1. Epub 2017 May 23.
Copula models have become increasingly popular for modelling the dependence structure in multivariate survival data. The two-parameter Archimedean family of Power Variance Function (PVF) copulas includes the Clayton, Positive Stable (Gumbel) and Inverse Gaussian copulas as special or limiting cases, thus offers a unified approach to fitting these important copulas. Two-stage frequentist procedures for estimating the marginal distributions and the PVF copula have been suggested by Andersen (Lifetime Data Anal 11:333-350, 2005), Massonnet et al. (J Stat Plann Inference 139(11):3865-3877, 2009) and Prenen et al. (J R Stat Soc Ser B 79(2):483-505, 2017) which first estimate the marginal distributions and conditional on these in a second step to estimate the PVF copula parameters. Here we explore an one-stage Bayesian approach that simultaneously estimates the marginal and the PVF copula parameters. For the marginal distributions, we consider both parametric as well as semiparametric models. We propose a new method to simulate uniform pairs with PVF dependence structure based on conditional sampling for copulas and on numerical approximation to solve a target equation. In a simulation study, small sample properties of the Bayesian estimators are explored. We illustrate the usefulness of the methodology using data on times to appendectomy for adult twins in the Australian NH&MRC Twin registry. Parameters of the marginal distributions and the PVF copula are simultaneously estimated in a parametric as well as a semiparametric approach where the marginal distributions are modelled using Weibull and piecewise exponential distributions, respectively.
在多变量生存数据中,用于建模依赖结构的Copula模型越来越受欢迎。双参数的幂方差函数(PVF)阿基米德族Copula包括Clayton、正稳定(Gumbel)和逆高斯Copula作为特殊或极限情况,因此为拟合这些重要的Copula提供了一种统一的方法。Andersen(《生存数据分析》11:333 - 350,2005年)、Massonnet等人(《统计规划与推断杂志》139(11):3865 - 3877,2009年)以及Prenen等人(《皇家统计学会会刊B辑》79(2):483 - 505,2017年)提出了两阶段频率主义程序来估计边际分布和PVF Copula,该程序首先估计边际分布,然后在第二步中基于这些估计来估计PVF Copula参数。在这里,我们探索一种单阶段贝叶斯方法,该方法同时估计边际和PVF Copula参数。对于边际分布,我们考虑参数模型和半参数模型。我们提出了一种基于Copula的条件采样和数值逼近以求解目标方程来模拟具有PVF依赖结构的均匀对的新方法。在一项模拟研究中,探索了贝叶斯估计器的小样本性质。我们使用澳大利亚NH&MRC双胞胎登记处中成年双胞胎阑尾切除时间的数据来说明该方法的有用性。在参数方法和半参数方法中同时估计边际分布和PVF Copula的参数,其中边际分布分别使用威布尔分布和分段指数分布进行建模。