School of Sustainable Engineering and The Built Environment, Arizona State University , 1151 S Forest Ave, Tempe, Arizona 85287, United States.
Environ Sci Technol. 2014 Sep 2;48(17):10010-8. doi: 10.1021/es502542a. Epub 2014 Aug 21.
Current policies accelerating photovoltaics (PV) deployments are motivated by environmental goals, including reducing greenhouse gas (GHG) emissions by displacing electricity generated from fossil-fuels. Existing practice assesses environmental benefits on a net life-cycle basis, where displaced GHG emissions offset those generated during PV production. However, this approach does not consider that the environmental costs of GHG release during production are incurred early, while environmental benefits accrue later. Thus, where policy targets suggest meeting GHG reduction goals established by a certain date, rapid PV deployment may have counterintuitive, albeit temporary, undesired consequences. On a cumulative radiative forcing (CRF) basis, the environmental improvements attributable to PV might be realized much later than is currently understood, particularly when PV manufacturing utilizes GHG-intensive energy sources (e.g., coal), but deployment occurs in areas with less GHG-intensive electricity sources (e.g., hydroelectric). This paper details a dynamic CRF model to examine the intertemporal warming impacts of PV deployments in California and Wyoming. CRF payback times are longer than GHG payback times by 6-12 years in California and 6-11 years in Wyoming depending on the PV technology mix and deployment strategy. For the same PV capacity being deployed, early installations yield greater CRF benefits (calculated over 10 and 25 years) than installations occurring later in time. Further, CRF benefits are maximized when PV technologies with the lowest manufacturing GHG footprint (cadmium telluride) are deployed in locations with the most GHG-intensive grids (i.e., Wyoming).
当前加速光伏 (PV) 部署的政策是出于环境目标,包括通过用替代化石燃料发电来减少温室气体 (GHG) 排放。现有实践是在净生命周期基础上评估环境效益,其中替代的 GHG 排放抵消了在 PV 生产过程中产生的排放。然而,这种方法没有考虑到生产过程中 GHG 释放的环境成本是早期发生的,而环境效益是后期才获得的。因此,如果政策目标表明要在某个日期前达到既定的 GHG 减排目标,那么快速部署 PV 可能会产生违背直觉的、尽管是暂时的、不受欢迎的后果。基于累积辐射强迫 (CRF),归因于 PV 的环境改善可能要比目前理解的要晚得多才会实现,尤其是当 PV 制造利用 GHG 密集型能源(如煤炭)时,但部署却发生在 GHG 密集型电力资源较少的地区(如水电)。本文详细介绍了一个动态 CRF 模型,用于研究加利福尼亚州和怀俄明州 PV 部署的跨期变暖影响。根据 PV 技术组合和部署策略,在加利福尼亚州,CRF 回收期比 GHG 回收期长 6-12 年,在怀俄明州,CRF 回收期比 GHG 回收期长 6-11 年。对于正在部署的相同 PV 容量,早期安装比后期安装产生更大的 CRF 效益(在 10 年和 25 年内计算)。此外,当部署具有最低制造 GHG 足迹(碲化镉)的 PV 技术时,CRF 效益最大化,这些技术部署在 GHG 密集型电网(即怀俄明州)的位置。