Bogner Jean, Pipatti Riitta, Hashimoto Seiji, Diaz Cristobal, Mareckova Katarina, Diaz Luis, Kjeldsen Peter, Monni Suvi, Faaij Andre, Gao Qingxian, Zhang Tianzhu, Ahmed Mohammed Abdelrafie, Sutamihardja R T M, Gregory Robert
Landfills +, Inc., Wheaton, Illinois 60187, USA.
Waste Manag Res. 2008 Feb;26(1):11-32. doi: 10.1177/0734242X07088433.
Greenhouse gas (GHG) emissions from post-consumer waste and wastewater are a small contributor (about 3%) to total global anthropogenic GHG emissions. Emissions for 2004-2005 totalled 1.4 Gt CO2-eq year(-1) relative to total emissions from all sectors of 49 Gt CO2-eq year(-1) [including carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and F-gases normalized according to their 100-year global warming potentials (GWP)]. The CH4 from landfills and wastewater collectively accounted for about 90% of waste sector emissions, or about 18% of global anthropogenic methane emissions (which were about 14% of the global total in 2004). Wastewater N2O and CO2 from the incineration of waste containing fossil carbon (plastics; synthetic textiles) are minor sources. Due to the wide range of mature technologies that can mitigate GHG emissions from waste and provide public health, environmental protection, and sustainable development co-benefits, existing waste management practices can provide effective mitigation of GHG emissions from this sector. Current mitigation technologies include landfill gas recovery, improved landfill practices, and engineered wastewater management. In addition, significant GHG generation is avoided through controlled composting, state-of-the-art incineration, and expanded sanitation coverage. Reduced waste generation and the exploitation of energy from waste (landfill gas, incineration, anaerobic digester biogas) produce an indirect reduction of GHG emissions through the conservation of raw materials, improved energy and resource efficiency, and fossil fuel avoidance. Flexible strategies and financial incentives can expand waste management options to achieve GHG mitigation goals; local technology decisions are influenced by a variety of factors such as waste quantity and characteristics, cost and financing issues, infrastructure requirements including available land area, collection and transport considerations, and regulatory constraints. Existing studies on mitigation potentials and costs for the waste sector tend to focus on landfill CH4 as the baseline. The commercial recovery of landfill CH4 as a source of renewable energy has been practised at full scale since 1975 and currently exceeds 105 Mt CO2-eq year(-1). Although landfill CH4 emissions from developed countries have been largely stabilized, emissions from developing countries are increasing as more controlled (anaerobic) landfilling practices are implemented; these emissions could be reduced by accelerating the introduction of engineered gas recovery, increasing rates of waste minimization and recycling, and implementing alternative waste management strategies provided they are affordable, effective, and sustainable. Aided by Kyoto mechanisms such as the Clean Development Mechanism (CDM) and Joint Implementation (JI), the total global economic mitigation potential for reducing waste sector emissions in 2030 is estimated to be > 1000 Mt CO2-eq (or 70% of estimated emissions) at costs below 100 US$ t(-1) CO2-eq year(-1). An estimated 20-30% of projected emissions for 2030 can be reduced at negative cost and 30-50% at costs < 20 US$ t(-) CO2-eq year(-1). As landfills produce CH4 for several decades, incineration and composting are complementary mitigation measures to landfill gas recovery in the short- to medium-term--at the present time, there are > 130 Mt waste year(-1) incinerated at more than 600 plants. Current uncertainties with respect to emissions and mitigation potentials could be reduced by more consistent national definitions, coordinated international data collection, standardized data analysis, field validation of models, and consistent application of life-cycle assessment tools inclusive of fossil fuel offsets.
消费后废弃物和废水产生的温室气体(GHG)排放,在全球人为温室气体排放总量中占比较小(约3%)。2004 - 2005年的排放量总计为1.4吉吨二氧化碳当量/年,而所有部门的总排放量为49吉吨二氧化碳当量/年[包括二氧化碳(CO₂)、甲烷(CH₄)、氧化亚氮(N₂O)以及根据其百年全球变暖潜能值(GWP)进行归一化处理的氟气体]。来自垃圾填埋场和废水的甲烷共同约占废弃物部门排放量的90%,约占全球人为甲烷排放量的18%(2004年约占全球总量的14%)。废水排放的氧化亚氮以及含化石碳废弃物(塑料;合成纺织品)焚烧产生的二氧化碳是次要排放源。由于有多种成熟技术可用于减少废弃物产生的温室气体排放,并能带来公共卫生、环境保护和可持续发展等协同效益,现有的废弃物管理措施能够有效减少该部门的温室气体排放。当前的减排技术包括垃圾填埋气回收、改进的垃圾填埋做法以及工程化废水管理。此外,通过控制堆肥、采用先进的焚烧技术以及扩大卫生设施覆盖范围,可避免大量温室气体的产生。减少废弃物产生以及利用废弃物能源(垃圾填埋气、焚烧、厌氧消化池沼气),通过节约原材料、提高能源和资源利用效率以及避免使用化石燃料,间接减少了温室气体排放。灵活的策略和财政激励措施可拓展废弃物管理选项,以实现温室气体减排目标;当地的技术决策受多种因素影响,如废弃物数量和特性、成本与融资问题、基础设施要求(包括可用土地面积)、收集和运输考量以及监管限制等。现有关于废弃物部门减排潜力和成本的研究往往以垃圾填埋场甲烷排放作为基线。自1975年起,垃圾填埋场甲烷作为可再生能源的商业回收已全面开展,目前每年超过1.05亿吨二氧化碳当量。尽管发达国家的垃圾填埋场甲烷排放已基本稳定,但随着更多受控(厌氧)填埋做法的实施,发展中国家的排放量正在增加;通过加快引入工程化气体回收、提高废弃物最小化和回收利用率以及实施其他可行、有效且可持续的替代废弃物管理策略,这些排放有望减少。在清洁发展机制(CDM)和联合履行(JI)等京都机制的助力下,预计到2030年,全球减少废弃物部门排放的经济减排潜力总量将超过1000亿吨二氧化碳当量(或占预计排放量的70%),成本低于100美元/吨二氧化碳当量/年。预计到2030年,约20% - 30%的预计排放量可实现负成本减排,30% - 50%的排放量可在成本低于20美元/吨二氧化碳当量/年的情况下减排。由于垃圾填埋场会在数十年内持续产生甲烷,焚烧和堆肥是短期内补充垃圾填埋气回收的减排措施——目前,全球有600多家工厂,每年焚烧超过1.3亿吨废弃物。通过更统一的国家定义、协调的国际数据收集、标准化的数据分析、模型的实地验证以及一致应用包含化石燃料抵消的生命周期评估工具,可减少当前排放和减排潜力方面的不确定性。