Suppr超能文献

光学透明化方法在组织工程神经干细胞球成像中的应用与评估

Application and assessment of optical clearing methods for imaging of tissue-engineered neural stem cell spheres.

作者信息

Boutin Molly E, Hoffman-Kim Diane

机构信息

1 Center for Biomedical Engineering, Brown University , Providence, Rhode Island.

出版信息

Tissue Eng Part C Methods. 2015 Mar;21(3):292-302. doi: 10.1089/ten.TEC.2014.0296. Epub 2014 Sep 19.

Abstract

Three-dimensional (3D) cell culture is an important tool that facilitates biological discoveries by bridging the divide between standard two-dimensional cell culture and the complex, high-cell-density in vivo environment. Typically, the internal structures of 3D tissue-engineered samples are visualized through an involved process of physical sectioning, immunostaining, imaging, and computational reconstruction. However, recent progress in tissue-clearing methods has improved optical-imaging-depth capabilities in whole embryos and brains by reducing tissue opacity and light scattering, thus decreasing the need for physical sectioning. In this study, we assessed the application of the recently published clearing techniques Clear(T2), Scale, and SeeDB to tissue-engineered neural spheres. We found that scaffold-free self-assembled adult hippocampal neural stem cell spheres of 100-μm diameter could be optically cleared and imaged using either Clear(T2) or Scale, while SeeDB only marginally improved imaging depth. The Clear(T2) protocol maintained sphere size, while Scale led to sample expansion, and SeeDB led to sample shrinkage. Additionally, using Clear(T2) we cleared and successfully imaged spheres of C6 glioma cells and spheres of primary cortical neurons. We conclude that Clear(T2) is the most effective protocol of those tested at clearing neural spheres of various cell types and could be applied to better understand neural cell interactions in 3D tissue-engineered samples.

摘要

三维(3D)细胞培养是一种重要工具,它通过弥合标准二维细胞培养与复杂、高细胞密度的体内环境之间的差距,促进生物学发现。通常,3D组织工程样本的内部结构是通过物理切片、免疫染色、成像和计算重建等复杂过程来可视化的。然而,组织透明化方法的最新进展通过降低组织不透明度和光散射,提高了在整个胚胎和大脑中的光学成像深度能力,从而减少了对物理切片的需求。在本研究中,我们评估了最近发表的透明化技术Clear(T2)、Scale和SeeDB在组织工程神经球中的应用。我们发现,直径为100μm的无支架自组装成年海马神经干细胞球可以使用Clear(T2)或Scale进行光学透明化和成像,而SeeDB仅略微提高了成像深度。Clear(T2)方案保持了球体大小,而Scale导致样本膨胀,SeeDB导致样本收缩。此外,使用Clear(T2)我们对C6胶质瘤细胞球和原代皮质神经元球进行了透明化并成功成像。我们得出结论,在测试的用于透明化各种细胞类型神经球的方案中,Clear(T2)是最有效的,可应用于更好地理解3D组织工程样本中的神经细胞相互作用。

相似文献

1
Application and assessment of optical clearing methods for imaging of tissue-engineered neural stem cell spheres.
Tissue Eng Part C Methods. 2015 Mar;21(3):292-302. doi: 10.1089/ten.TEC.2014.0296. Epub 2014 Sep 19.
2
Imaging the mammary gland and mammary tumours in 3D: optical tissue clearing and immunofluorescence methods.
Breast Cancer Res. 2016 Dec 13;18(1):127. doi: 10.1186/s13058-016-0754-9.
3
Influence of and Agitation Conditions in the Fluorescence Imaging of 3D Spheroids.
Int J Mol Sci. 2020 Dec 29;22(1):266. doi: 10.3390/ijms22010266.
4
On-chip clearing of arrays of 3-D cell cultures and micro-tissues.
Biomicrofluidics. 2016 Jul 20;10(4):044107. doi: 10.1063/1.4959031. eCollection 2016 Jul.
5
6
Optical clearing methods: An overview of the techniques used for the imaging of 3D spheroids.
Biotechnol Bioeng. 2019 Oct;116(10):2742-2763. doi: 10.1002/bit.27105. Epub 2019 Jul 21.
7
Sphere-Derived Multipotent Progenitor Cells Obtained From Human Oral Mucosa Are Enriched in Neural Crest Cells.
Stem Cells Transl Med. 2016 Jan;5(1):117-28. doi: 10.5966/sctm.2015-0111. Epub 2015 Nov 18.
8
A fiber-optic-based imaging system for nondestructive assessment of cell-seeded tissue-engineered scaffolds.
Tissue Eng Part C Methods. 2012 Sep;18(9):677-87. doi: 10.1089/ten.TEC.2011.0490. Epub 2012 May 10.
10
Direct conversion of fibroblasts into neural progenitor-like cells by forced growth into 3D spheres on low attachment surfaces.
Biomaterials. 2013 Aug;34(24):5897-906. doi: 10.1016/j.biomaterials.2013.04.040. Epub 2013 May 13.

引用本文的文献

1
Advanced tissue technologies of blood-brain barrier organoids as high throughput toxicity readouts in drug development.
Heliyon. 2024 Dec 2;11(1):e40813. doi: 10.1016/j.heliyon.2024.e40813. eCollection 2025 Jan 15.
2
Rigor and reproducibility in human brain organoid research: Where we are and where we need to go.
Stem Cell Reports. 2024 Jun 11;19(6):796-816. doi: 10.1016/j.stemcr.2024.04.008. Epub 2024 May 16.
3
On-chip clearing for live imaging of 3D cell cultures.
Biomed Opt Express. 2023 May 31;14(6):3003-3017. doi: 10.1364/BOE.489219. eCollection 2023 Jun 1.
4
Deep learning-based adaptive optics for light sheet fluorescence microscopy.
Biomed Opt Express. 2023 May 25;14(6):2905-2919. doi: 10.1364/BOE.488995. eCollection 2023 Jun 1.
6
HyClear: A Novel Tissue Clearing Solution for One-Step Clearing of Microtissues.
Cells. 2022 Nov 30;11(23):3854. doi: 10.3390/cells11233854.
7
Recent progresses in novel models of primary neurons: A biomaterial perspective.
Front Bioeng Biotechnol. 2022 Aug 17;10:953031. doi: 10.3389/fbioe.2022.953031. eCollection 2022.
8
Quantitative analysis of illumination and detection corrections in adaptive light sheet fluorescence microscopy.
Biomed Opt Express. 2022 Apr 22;13(5):2960-2974. doi: 10.1364/BOE.454561. eCollection 2022 May 1.
9
Novel Experimental Approaches to Study Myelination and Remyelination in the Central Nervous System.
Front Cell Neurosci. 2021 Oct 14;15:748849. doi: 10.3389/fncel.2021.748849. eCollection 2021.
10

本文引用的文献

1
Multilayer spheroids to quantify drug uptake and diffusion in 3D.
Mol Pharm. 2014 Jul 7;11(7):2071-81. doi: 10.1021/mp500002y. Epub 2014 Apr 2.
2
Recent progress in tissue optical clearing.
Laser Photon Rev. 2013 Sep;7(5):732-757. doi: 10.1002/lpor.201200056. Epub 2013 Feb 5.
3
Application of three-dimensional imaging to the intestinal crypt organoids and biopsied intestinal tissues.
ScientificWorldJournal. 2013 Nov 14;2013:624342. doi: 10.1155/2013/624342. eCollection 2013.
4
The use of optical clearing and multiphoton microscopy for investigation of three-dimensional tissue-engineered constructs.
Tissue Eng Part C Methods. 2014 Jul;20(7):570-7. doi: 10.1089/ten.TEC.2013.0538. Epub 2014 Jan 16.
5
Light microscopy mapping of connections in the intact brain.
Trends Cogn Sci. 2013 Dec;17(12):596-9. doi: 10.1016/j.tics.2013.10.005. Epub 2013 Nov 6.
6
Visualizing the effect of tumor microenvironments on radiation-induced cell kinetics in multicellular spheroids consisting of HeLa cells.
Biochem Biophys Res Commun. 2013 Oct 4;439(4):453-8. doi: 10.1016/j.bbrc.2013.08.093. Epub 2013 Sep 7.
7
Cerebral organoids model human brain development and microcephaly.
Nature. 2013 Sep 19;501(7467):373-9. doi: 10.1038/nature12517. Epub 2013 Aug 28.
8
SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction.
Nat Neurosci. 2013 Aug;16(8):1154-61. doi: 10.1038/nn.3447. Epub 2013 Jun 23.
9
Structural and molecular interrogation of intact biological systems.
Nature. 2013 May 16;497(7449):332-7. doi: 10.1038/nature12107. Epub 2013 Apr 10.
10
ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue.
Development. 2013 Mar;140(6):1364-8. doi: 10.1242/dev.091844.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验