Suppr超能文献

构建肾血管床。

Patterning the renal vascular bed.

作者信息

Herzlinger Doris, Hurtado Romulo

机构信息

Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, NY, United States.

Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, NY, United States.

出版信息

Semin Cell Dev Biol. 2014 Dec;36:50-6. doi: 10.1016/j.semcdb.2014.08.002. Epub 2014 Aug 13.

Abstract

The renal vascular bed has a stereotypic architecture that is essential for the kidney's role in excreting metabolic waste and regulating the volume and composition of body fluids. The kidney's excretory functions are dependent on the delivery of the majority of renal blood flow to the glomerular capillaries, which filter plasma removing from it metabolic waste, as well as vast quantities of solutes and fluids. The renal tubules reabsorb from the glomerular filtrate solutes and fluids required for homeostasis, while the post-glomerular capillary beds return these essential substances back into the systemic circulation. Thus, the kidney's regulatory functions are dependent on the close proximity or alignment of the post-glomerular capillary beds with the renal tubules. This review will focus on our current knowledge of the mechanisms controlling the embryonic development of the renal vasculature. An understanding of this process is critical for developing novel therapies to prevent vessel rarefaction and will be essential for engineering renal tissues suitable for restoring kidney function to the ever-increasing population of patients with end stage renal disease.

摘要

肾血管床具有一种刻板的结构,这对于肾脏在排泄代谢废物以及调节体液容量和成分方面所起的作用至关重要。肾脏的排泄功能依赖于大部分肾血流输送到肾小球毛细血管,这些毛细血管过滤血浆,从中清除代谢废物以及大量溶质和液体。肾小管从肾小球滤液中重吸收内环境稳态所需的溶质和液体,而肾小球后毛细血管床则将这些必需物质返还至体循环。因此,肾脏的调节功能依赖于肾小球后毛细血管床与肾小管的紧密相邻或排列。本综述将聚焦于我们目前对控制肾血管系统胚胎发育机制的认识。理解这一过程对于开发预防血管稀疏的新疗法至关重要,并且对于构建适合恢复终末期肾病患者不断增加的肾功能的肾组织也必不可少。

相似文献

1
Patterning the renal vascular bed.
Semin Cell Dev Biol. 2014 Dec;36:50-6. doi: 10.1016/j.semcdb.2014.08.002. Epub 2014 Aug 13.
3
Kidney tubules: intertubular, vascular, and glomerular cross-talk.
Curr Opin Nephrol Hypertens. 2016 May;25(3):194-202. doi: 10.1097/MNH.0000000000000218.
5
The renal circulations.
Hosp Pract. 1978 Jul;13(7):35-46. doi: 10.1080/21548331.1978.11707369.
6
The renal glomerulus and vasculature in 'aggregation' chimeric mice.
Nephron. 2002 Mar;90(3):267-72. doi: 10.1159/000049062.
9
Zebrafish kidney development.
Methods Cell Biol. 2004;76:501-30. doi: 10.1016/s0091-679x(04)76023-9.

引用本文的文献

1
Vascularization of kidney organoids: different strategies and perspectives.
Front Urol. 2024 May 21;4:1355042. doi: 10.3389/fruro.2024.1355042. eCollection 2024.
2
Ex Vivo Vascular Imaging and Perfusion Studies of Normal Kidney and Tumor Vasculature.
Cancers (Basel). 2024 May 20;16(10):1939. doi: 10.3390/cancers16101939.
3
3D imaging with superior resolution using Atacama Clear.
bioRxiv. 2025 Jan 15:2024.01.22.576689. doi: 10.1101/2024.01.22.576689.
4
Platelets in Renal Disease.
Int J Mol Sci. 2023 Sep 29;24(19):14724. doi: 10.3390/ijms241914724.
5
The Beauty and Complexity of Blood Vessel Patterning.
Cold Spring Harb Perspect Med. 2022 Nov 1;12(11):a041167. doi: 10.1101/cshperspect.a041167.
6
Slit2-Robo Signaling Promotes Glomerular Vascularization and Nephron Development.
J Am Soc Nephrol. 2021 Sep;32(9):2255-2272. doi: 10.1681/ASN.2020111640. Epub 2021 Aug 2.
7
Phenotypic diversity and metabolic specialization of renal endothelial cells.
Nat Rev Nephrol. 2021 Jul;17(7):441-464. doi: 10.1038/s41581-021-00411-9. Epub 2021 Mar 25.
8
Embryonic Kidney Development, Stem Cells and the Origin of Wilms Tumor.
Genes (Basel). 2021 Feb 23;12(2):318. doi: 10.3390/genes12020318.
9
Regression of Peritubular Capillaries Coincides with Angiogenesis and Renal Cyst Growth in Experimental Polycystic Kidney Disease.
Int J Nephrol Renovasc Dis. 2020 Apr 1;13:53-64. doi: 10.2147/IJNRD.S238767. eCollection 2020.
10

本文引用的文献

1
Renal blood flow and oxygenation drive nephron progenitor differentiation.
Am J Physiol Renal Physiol. 2014 Aug 1;307(3):F337-45. doi: 10.1152/ajprenal.00208.2014. Epub 2014 Jun 11.
2
Ablation of the renal stroma defines its critical role in nephron progenitor and vasculature patterning.
PLoS One. 2014 Feb 5;9(2):e88400. doi: 10.1371/journal.pone.0088400. eCollection 2014.
4
RBP-J in FOXD1+ renal stromal progenitors is crucial for the proper development and assembly of the kidney vasculature and glomerular mesangial cells.
Am J Physiol Renal Physiol. 2014 Jan;306(2):F249-58. doi: 10.1152/ajprenal.00313.2013. Epub 2013 Nov 13.
5
ETS factors regulate Vegf-dependent arterial specification.
Dev Cell. 2013 Jul 15;26(1):45-58. doi: 10.1016/j.devcel.2013.06.007. Epub 2013 Jul 3.
6
Development of the renal arterioles.
J Am Soc Nephrol. 2011 Dec;22(12):2156-65. doi: 10.1681/ASN.2011080818. Epub 2011 Nov 3.
7
Angiopoietin-1 is essential in mouse vasculature during development and in response to injury.
J Clin Invest. 2011 Jun;121(6):2278-89. doi: 10.1172/JCI46322. Epub 2011 May 23.
8
β-catenin causes renal dysplasia via upregulation of Tgfβ2 and Dkk1.
J Am Soc Nephrol. 2011 Apr;22(4):718-31. doi: 10.1681/ASN.2010050562. Epub 2011 Mar 24.
9
Expression of lymphatic endothelium-specific hyaluronan receptor LYVE-1 in the developing mouse kidney.
Cell Tissue Res. 2011 Feb;343(2):429-44. doi: 10.1007/s00441-010-1098-x. Epub 2010 Dec 23.
10
High-resolution imaging of kidney vascular corrosion casts with Nano-CT.
Microsc Microanal. 2011 Apr;17(2):215-9. doi: 10.1017/S1431927610094201. Epub 2010 Dec 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验