Suppr超能文献

一种微型驱动助听器:一种新型非侵入性听力假体致动器。

A micro-drive hearing aid: a novel non-invasive hearing prosthesis actuator.

作者信息

Paulick Peyton Elizabeth, Merlo Mark W, Mahboubi Hossein, Djalilian Hamid R, Bachman Mark

机构信息

Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA,

出版信息

Biomed Microdevices. 2014 Dec;16(6):915-25. doi: 10.1007/s10544-014-9896-7.

Abstract

The direct hearing device (DHD) is a new auditory prosthesis that combines conventional hearing aid and middle ear implant technologies into a single device. The DHD is located deep in the ear canal and recreates sounds with mechanical movements of the tympanic membrane. A critical component of the DHD is the microactuator, which must be capable of moving the tympanic membrane at frequencies and magnitudes appropriate for normal hearing, with little distortion. The DHD actuator reported here utilized a voice coil actuator design and was 3.7 mm in diameter. The device has a smoothly varying frequency response and produces a precisely controllable force. The total harmonic distortion between 425 Hz and 10 kHz is below 0.5 % and acoustic noise generation is minimal. The device was tested as a tympanic membrane driver on cadaveric temporal bones where the device was coupled to the umbo of the tympanic membrane. The DHD successfully recreated ossicular chain movements across the frequencies of human hearing while demonstrating controllable magnitude. Moreover, the micro-actuator was validated in a short-term human clinical performance study where sound matching and complex audio waveforms were evaluated by a healthy subject.

摘要

直接听觉装置(DHD)是一种新型听觉假体,它将传统助听器和中耳植入技术结合在一个装置中。DHD位于耳道深处,通过鼓膜的机械运动再现声音。DHD的一个关键部件是微致动器,它必须能够以适合正常听力的频率和幅度移动鼓膜,且失真很小。这里报道的DHD致动器采用音圈致动器设计,直径为3.7毫米。该装置具有平滑变化的频率响应,并产生精确可控的力。425赫兹至10千赫兹之间的总谐波失真低于0.5%,产生的声学噪声极小。该装置在尸体颞骨上作为鼓膜驱动器进行了测试,在那里该装置与鼓膜的脐部相连。DHD在人类听力频率范围内成功再现了听骨链运动,同时显示出可控的幅度。此外,微致动器在一项短期人体临床性能研究中得到了验证,在该研究中,一名健康受试者对声音匹配和复杂音频波形进行了评估。

相似文献

1
A micro-drive hearing aid: a novel non-invasive hearing prosthesis actuator.
Biomed Microdevices. 2014 Dec;16(6):915-25. doi: 10.1007/s10544-014-9896-7.
2
Development of a novel completely-in-the-canal direct-drive hearing device.
Laryngoscope. 2017 Apr;127(4):932-938. doi: 10.1002/lary.26221. Epub 2016 Aug 22.
3
Investigation of a novel completely-in-the-canal direct-drive hearing device: a temporal bone study.
Otol Neurotol. 2013 Jan;34(1):115-20. doi: 10.1097/MAO.0b013e318278522e.
4
Completely-in-the-canal magnet-drive hearing device: a temporal bone study.
Otolaryngol Head Neck Surg. 2013 Mar;148(3):466-8. doi: 10.1177/0194599812471608. Epub 2012 Dec 21.
6
The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
Hear Res. 2013 Jul;301:115-24. doi: 10.1016/j.heares.2012.12.010. Epub 2012 Dec 28.
7
The EarLens system: new sound transduction methods.
Hear Res. 2010 May;263(1-2):104-13. doi: 10.1016/j.heares.2010.01.012. Epub 2010 Jan 29.
8
Air- and Bone-Conducted Sources of Feedback With an Active Middle Ear Implant.
Ear Hear. 2019 May/Jun;40(3):725-731. doi: 10.1097/AUD.0000000000000655.
9
Vibroplasty combined with tympanic membrane reconstruction in middle ear ventilation disorders.
Hear Res. 2019 Jul;378:166-175. doi: 10.1016/j.heares.2019.02.012. Epub 2019 Feb 27.
10
A New Trans-Tympanic Microphone Approach for Fully Implantable Hearing Devices.
Sensors (Basel). 2015 Sep 9;15(9):22798-810. doi: 10.3390/s150922798.

引用本文的文献

2
Attenuating the ear canal feedback pressure of a laser-driven hearing aid.
J Acoust Soc Am. 2017 Mar;141(3):1683. doi: 10.1121/1.4976083.

本文引用的文献

1
A novel method to determine standardized anatomic dimensions of the osseous external auditory canal.
Otol Neurotol. 2012 Jul;33(5):715-20. doi: 10.1097/MAO.0b013e3182544e55.
2
Laser Doppler vibrometric assessment of middle ear motion in Thiel-embalmed heads.
Otol Neurotol. 2012 Apr;33(3):311-8. doi: 10.1097/MAO.0b013e3182487de0.
3
Finite element analysis of the effects of a floating mass transducer on the performance of a middle ear implant.
J Med Eng Technol. 2010 Jul-Aug;34(5-6):316-23. doi: 10.3109/03091902.2010.481033.
4
The EarLens system: new sound transduction methods.
Hear Res. 2010 May;263(1-2):104-13. doi: 10.1016/j.heares.2010.01.012. Epub 2010 Jan 29.
5
Guidelines on limits of exposure to static magnetic fields.
Health Phys. 2009 Apr;96(4):504-14. doi: 10.1097/01.HP.0000343164.27920.4a.
6
Ossicular resonance modes of the human middle ear for bone and air conduction.
J Acoust Soc Am. 2009 Feb;125(2):968-79. doi: 10.1121/1.3056564.
7
Implantable hearing aids.
Proc Inst Mech Eng H. 2008 Aug;222(6):837-52. doi: 10.1243/09544119JEIM365.
8
Implantable hearing devices.
Curr Opin Otolaryngol Head Neck Surg. 2008 Oct;16(5):416-9. doi: 10.1097/MOO.0b013e32830a49f0.
9
Measurements of human middle- and inner-ear mechanics with dehiscence of the superior semicircular canal.
Otol Neurotol. 2007 Feb;28(2):250-7. doi: 10.1097/01.mao.0000244370.47320.9a.
10
The effect of methodological differences in the measurement of stapes motion in live and cadaver ears.
Audiol Neurootol. 2006;11(3):183-97. doi: 10.1159/000091815. Epub 2006 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验