Suppr超能文献

一种基于全变差和非凸优化的光声图像重建方法。

A photoacoustic image reconstruction method using total variation and nonconvex optimization.

作者信息

Zhang Chen, Zhang Yan, Wang Yuanyuan

机构信息

Department of Electronic Engineering, Fudan University, Shanghai 200433, China.

出版信息

Biomed Eng Online. 2014 Aug 17;13:117. doi: 10.1186/1475-925X-13-117.

Abstract

BACKGROUND

In photoacoustic imaging (PAI), the reduction of scanning time is a major concern for PAI in practice. A popular strategy is to reconstruct the image from the sparse-view sampling data. However, the insufficient data leads to reconstruction quality deteriorating. Therefore, it is very important to enhance the quality of the sparse-view reconstructed images.

METHOD

In this paper, we proposed a joint total variation and Lp-norm (TV-Lp) based image reconstruction algorithm for PAI. In this algorithm, the reconstructed image is updated by calculating its total variation value and Lp-norm value. Along with the iteration, an operator-splitting framework is utilized to reduce the computational cost and the Barzilai-Borwein step size selection method is adopted to obtain the faster convergence.

RESULTS AND CONCLUSION

Through the numerical simulation, the proposed algorithm is validated and compared with other widely used PAI reconstruction algorithms. It is revealed in the simulation result that the proposed algorithm may be more accurate than the other algorithms. Moreover, the computational cost, the convergence, the robustness to noises and the tunable parameters of the algorithm are all discussed respectively. We also implement the TV-Lp algorithm in the in-vitro experiments to verify its performance in practice. Through the numerical simulations and in-vitro experiments, it is demonstrated that the proposed algorithm enhances the quality of the reconstructed images with faster calculation speed and convergence.

摘要

背景

在光声成像(PAI)中,减少扫描时间是PAI实际应用中的一个主要问题。一种常用策略是从稀疏视图采样数据重建图像。然而,数据不足会导致重建质量下降。因此,提高稀疏视图重建图像的质量非常重要。

方法

本文提出了一种基于联合全变差和Lp范数(TV-Lp)的PAI图像重建算法。在该算法中,通过计算重建图像的全变差值和Lp范数来更新重建图像。随着迭代的进行,利用算子分裂框架降低计算成本,并采用Barzilai-Borwein步长选择方法以实现更快的收敛。

结果与结论

通过数值模拟,对所提算法进行了验证,并与其他广泛使用的PAI重建算法进行了比较。模拟结果表明,所提算法可能比其他算法更准确。此外,还分别讨论了该算法的计算成本、收敛性、对噪声的鲁棒性以及可调参数。我们还在体外实验中实现了TV-Lp算法,以验证其在实际中的性能。通过数值模拟和体外实验表明,所提算法以更快的计算速度和收敛性提高了重建图像的质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cbc/4148921/18d368c07183/12938_2014_855_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验