Suppr超能文献

利用稀疏性和秩亏来改进动态 MRI 重建。

Improved dynamic MRI reconstruction by exploiting sparsity and rank-deficiency.

机构信息

Indraprastha Institute of Information Technology, Delhi.

出版信息

Magn Reson Imaging. 2013 Jun;31(5):789-95. doi: 10.1016/j.mri.2012.10.026. Epub 2012 Dec 5.

Abstract

In this paper we address the problem of dynamic MRI reconstruction from partially sampled K-space data. Our work is motivated by previous studies in this area that proposed exploiting the spatiotemporal correlation of the dynamic MRI sequence by posing the reconstruction problem as a least squares minimization regularized by sparsity and low-rank penalties. Ideally the sparsity and low-rank penalties should be represented by the l(0)-norm and the rank of a matrix; however both are NP hard penalties. The previous studies used the convex l(1)-norm as a surrogate for the l(0)-norm and the non-convex Schatten-q norm (0<q ≤ 1) as a surrogate for the rank of matrix. Following past research in sparse recovery, we know that non-convex l(p)-norm (0<p ≤ 1) is a better substitute for the NP hard l(0)-norm than the convex l(1)-norm. Motivated by these studies, we propose improvements over the previous studies by replacing the l(1)-norm sparsity penalty by the lp-norm. Thus, we reconstruct the dynamic MRI sequence by solving a least squares minimization problem regularized by l(p)-norm as the sparsity penalty and Schatten-q norm as the low-rank penalty. There are no efficient algorithms to solve the said problems. In this paper, we derive efficient algorithms to solve them. The experiments have been carried out on Dynamic Contrast Enhanced (DCE) MRI datasets. Both quantitative and qualitative analysis indicates the superiority of our proposed improvement over the existing methods.

摘要

在本文中,我们解决了从部分采样 K 空间数据中重建动态 MRI 的问题。我们的工作是受该领域先前研究的启发,这些研究提出通过将重建问题表示为最小二乘最小化问题,并通过稀疏性和低秩惩罚进行正则化,来利用动态 MRI 序列的时空相关性。理想情况下,稀疏性和低秩惩罚应该由 l(0)-范数和矩阵的秩表示;然而,这两者都是 NP 难的惩罚。先前的研究使用凸 l(1)-范数作为 l(0)-范数的替代,使用非凸 Schatten-q 范数(0<q ≤ 1)作为矩阵秩的替代。根据稀疏恢复的过去研究,我们知道非凸 l(p)-范数(0<p ≤ 1)比凸 l(1)-范数更适合替代 NP 难的 l(0)-范数。受这些研究的启发,我们通过用 lp-范数代替 l(1)-范数稀疏性惩罚来对先前的研究进行改进。因此,我们通过解决最小二乘最小化问题来重建动态 MRI 序列,该问题由 l(p)-范数作为稀疏性惩罚和 Schatten-q 范数作为低秩惩罚进行正则化。没有有效的算法可以解决这些问题。在本文中,我们推导了有效的算法来解决这些问题。实验是在动态对比增强(DCE)MRI 数据集上进行的。定量和定性分析都表明,我们提出的改进方法优于现有的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验