Suppr超能文献

关于关节软骨中致密矿化无细胞突起的碎片化及其在骨关节炎中的可能作用。

On fragmenting, densely mineralised acellular protrusions into articular cartilage and their possible role in osteoarthritis.

作者信息

Boyde A, Davis G R, Mills D, Zikmund T, Cox T M, Adams V L, Niker A, Wilson P J, Dillon J P, Ranganath L R, Jeffery N, Jarvis J C, Gallagher J A

机构信息

Biophysics, Oral Growth and Development, Barts and The London School of Medicine and Dentistry, QMUL, London, UK.

出版信息

J Anat. 2014 Oct;225(4):436-46. doi: 10.1111/joa.12226. Epub 2014 Jul 31.

Abstract

High density mineralised protrusions (HDMP) from the tidemark mineralising front into hyaline articular cartilage (HAC) were first described in Thoroughbred racehorse fetlock joints and later in Icelandic horse hock joints. We now report them in human material. Whole femoral heads removed at operation for joint replacement or from dissection room cadavers were imaged using magnetic resonance imaging (MRI) dual echo steady state at 0.23 mm resolution, then 26-μm resolution high contrast X-ray microtomography, sectioned and embedded in polymethylmethacrylate, blocks cut and polished and re-imaged with 6-μm resolution X-ray microtomography. Tissue mineralisation density was imaged using backscattered electron SEM (BSE SEM) at 20 kV with uncoated samples. HAC histology was studied by BSE SEM after staining block faces with ammonium triiodide solution. HDMP arise via the extrusion of an unknown mineralisable matrix into clefts in HAC, a process of acellular dystrophic calcification. Their formation may be an extension of a crack self-healing mechanism found in bone and articular calcified cartilage. Mineral concentration exceeds that of articular calcified cartilage and is not uniform. It is probable that they have not been reported previously because they are removed by decalcification with standard protocols. Mineral phase morphology frequently shows the agglomeration of many fine particles into larger concretions. HDMP are surrounded by HAC, are brittle, and show fault lines within them. Dense fragments found within damaged HAC could make a significant contribution to joint destruction. At least larger HDMP can be detected with the best MRI imaging ex vivo.

摘要

从潮标矿化前沿延伸至透明关节软骨(HAC)的高密度矿化突起(HDMP)最早在纯种赛马的跗关节中被描述,随后在冰岛马的跗关节中也有发现。我们现在报告在人体材料中的发现。对因关节置换手术切除的整个股骨头或解剖室尸体的股骨头,先采用分辨率为0.23毫米的磁共振成像(MRI)双回波稳态序列进行成像,然后用分辨率为26微米的高对比度X射线显微断层扫描成像,切片并嵌入聚甲基丙烯酸甲酯,切割并抛光这些块体,再用分辨率为6微米的X射线显微断层扫描重新成像。使用20千伏的背散射电子扫描电镜(BSE SEM)对未涂层样品的组织矿化密度进行成像。在用碘化三铵溶液对块体面进行染色后,通过BSE SEM研究HAC组织学。HDMP是通过一种未知的可矿化基质挤压到HAC的裂隙中形成的,这是一个无细胞营养不良性钙化过程。它们的形成可能是在骨和关节钙化软骨中发现的裂纹自我修复机制的延伸。矿物质浓度超过关节钙化软骨,且不均匀。很可能以前没有报告过它们,因为它们在标准方案的脱钙过程中被去除了。矿物相形态常常显示许多细颗粒聚集成较大的凝块。HDMP被HAC包围,质地脆,内部有断层线。在受损HAC内发现的致密碎片可能对关节破坏有重大影响。至少较大的HDMP可以在最佳的离体MRI成像中检测到。

相似文献

3
4
The Bone Cartilage Interface and Osteoarthritis.
Calcif Tissue Int. 2021 Sep;109(3):303-328. doi: 10.1007/s00223-021-00866-9. Epub 2021 Jun 4.
6
PTH [1-34]-induced alterations of the subchondral bone provoke early osteoarthritis.
Osteoarthritis Cartilage. 2014 Jun;22(6):813-21. doi: 10.1016/j.joca.2014.03.010. Epub 2014 Mar 21.

引用本文的文献

1
Scanning Electron Microscopy and Bone.
Methods Mol Biol. 2025;2885:621-670. doi: 10.1007/978-1-0716-4306-8_31.
2
An anatomical investigation of alkaptonuria: Novel insights into ochronosis of cartilage and bone.
J Anat. 2025 Jun;246(6):1053-1074. doi: 10.1111/joa.14190. Epub 2024 Dec 20.
4
Development of an Effective Therapy for Alkaptonuria - Lessons for Osteoarthritis.
Rheumatol Immunol Res. 2021 Sep 28;2(2):79-85. doi: 10.2478/rir-2021-0011. eCollection 2021 Jun.
7
Moving Beyond the Limits of Detection: The Past, the Present, and the Future of Diagnostic Imaging in Canine Osteoarthritis.
Front Vet Sci. 2022 Mar 15;9:789898. doi: 10.3389/fvets.2022.789898. eCollection 2022.
8
"Lessons from Rare Forms of Osteoarthritis".
Calcif Tissue Int. 2021 Sep;109(3):291-302. doi: 10.1007/s00223-021-00896-3. Epub 2021 Aug 21.
9
The Bone Cartilage Interface and Osteoarthritis.
Calcif Tissue Int. 2021 Sep;109(3):303-328. doi: 10.1007/s00223-021-00866-9. Epub 2021 Jun 4.
10
Macro, Micro, and Molecular. Changes of the Osteochondral Interface in Osteoarthritis Development.
Front Cell Dev Biol. 2021 May 10;9:659654. doi: 10.3389/fcell.2021.659654. eCollection 2021.

本文引用的文献

1
Microstructural changes in cartilage and bone related to repetitive overloading in an equine athlete model.
J Anat. 2014 Jun;224(6):647-58. doi: 10.1111/joa.12177. Epub 2014 Apr 1.
3
Identification of cartilage injury using quantitative multiphoton microscopy.
Osteoarthritis Cartilage. 2014 Feb;22(2):355-62. doi: 10.1016/j.joca.2013.10.008. Epub 2013 Nov 1.
4
A review of phosphate mineral nucleation in biology and geobiology.
Calcif Tissue Int. 2013 Oct;93(4):382-96. doi: 10.1007/s00223-013-9784-9.
5
Shock absorbing ability of articular cartilage and subchondral bone under impact compression.
J Mech Behav Biomed Mater. 2013 Oct;26:127-35. doi: 10.1016/j.jmbbm.2013.05.005. Epub 2013 May 22.
6
Ochronotic osteoarthropathy in a mouse model of alkaptonuria, and its inhibition by nitisinone.
Ann Rheum Dis. 2014 Jan;73(1):284-9. doi: 10.1136/annrheumdis-2012-202878. Epub 2013 Mar 19.
7
Morphology of the cartilaginous endplates in human intervertebral disks with ultrashort echo time MR imaging.
Radiology. 2013 Feb;266(2):564-74. doi: 10.1148/radiol.12121181. Epub 2012 Nov 28.
10
Impact induced failure of cartilage-on-bone following creep loading: a microstructural and fracture mechanics study.
J Mech Behav Biomed Mater. 2012 Oct;14:239-47. doi: 10.1016/j.jmbbm.2012.06.007. Epub 2012 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验